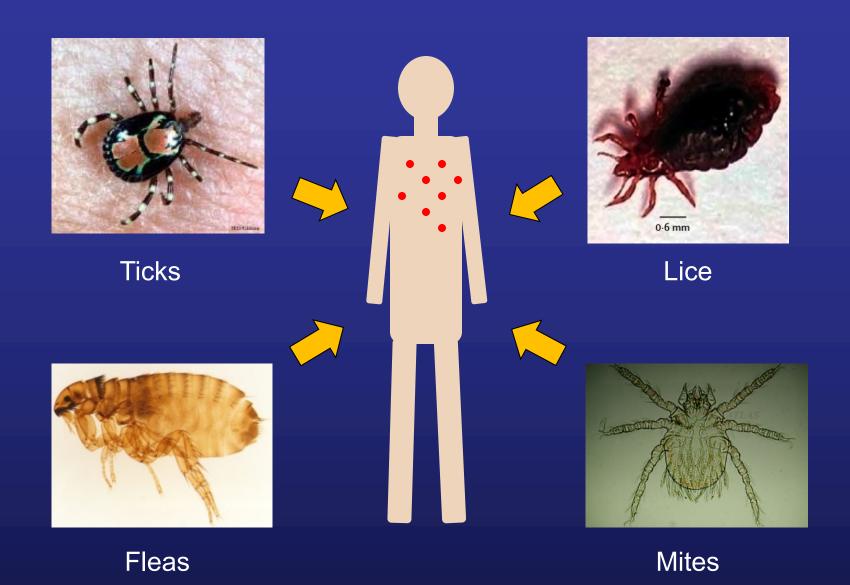
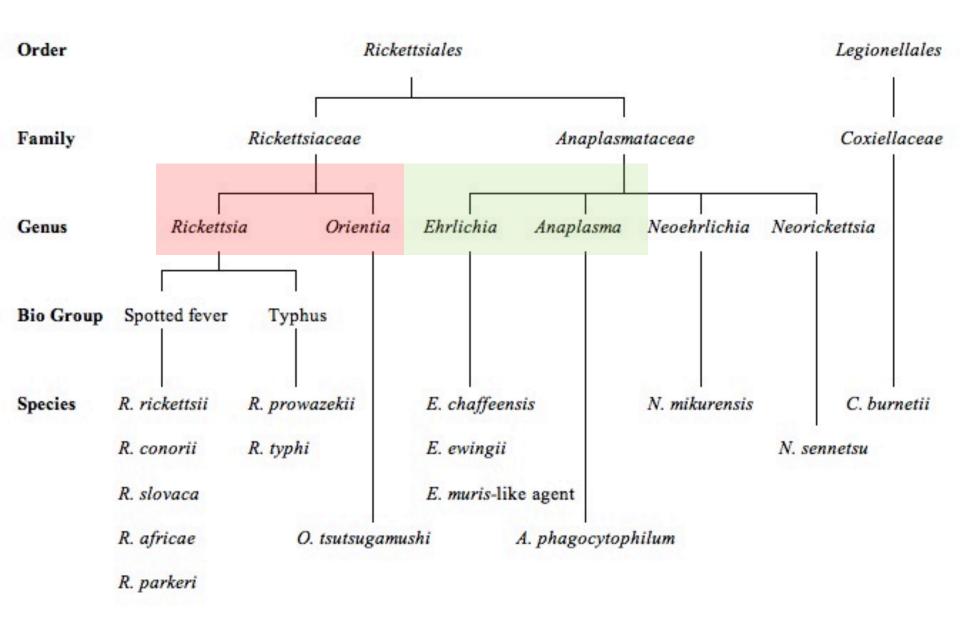
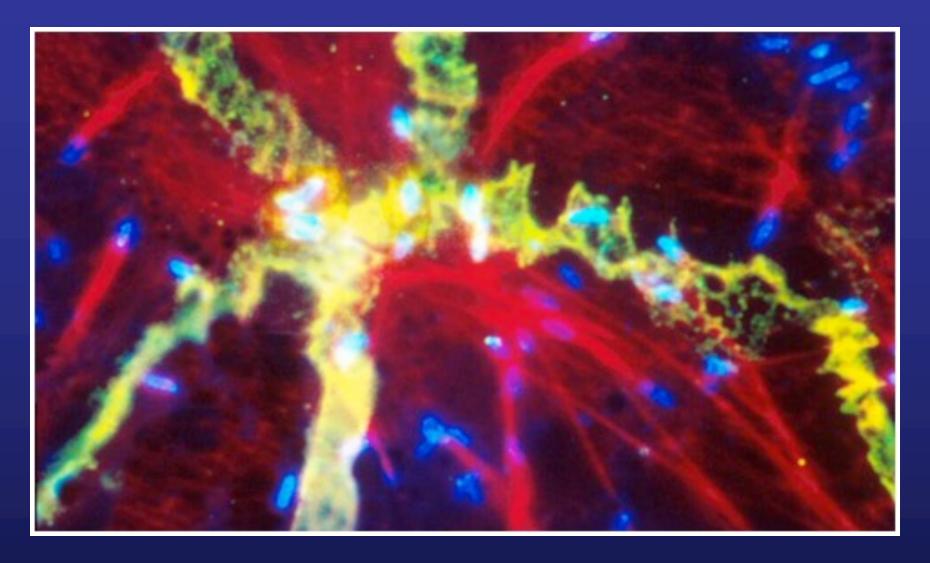
Rickettsial Diseases

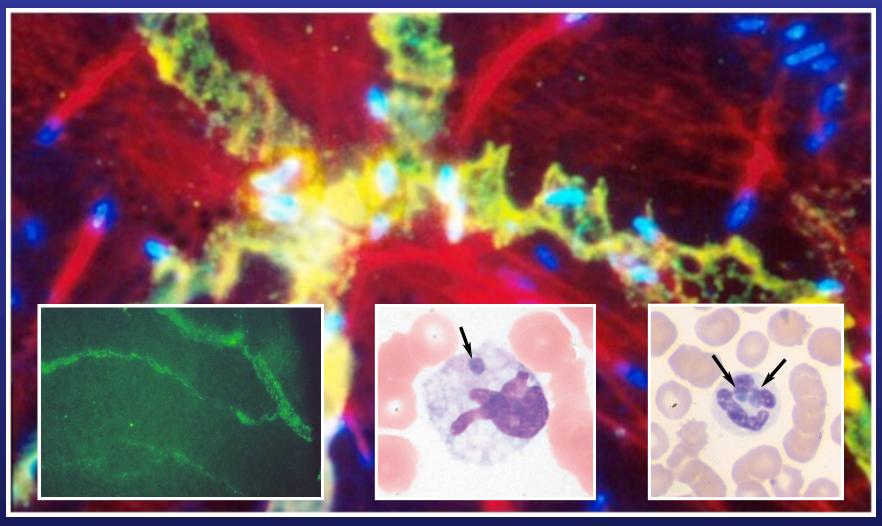
Lucas Blanton, MD September 27, 2025




Outline

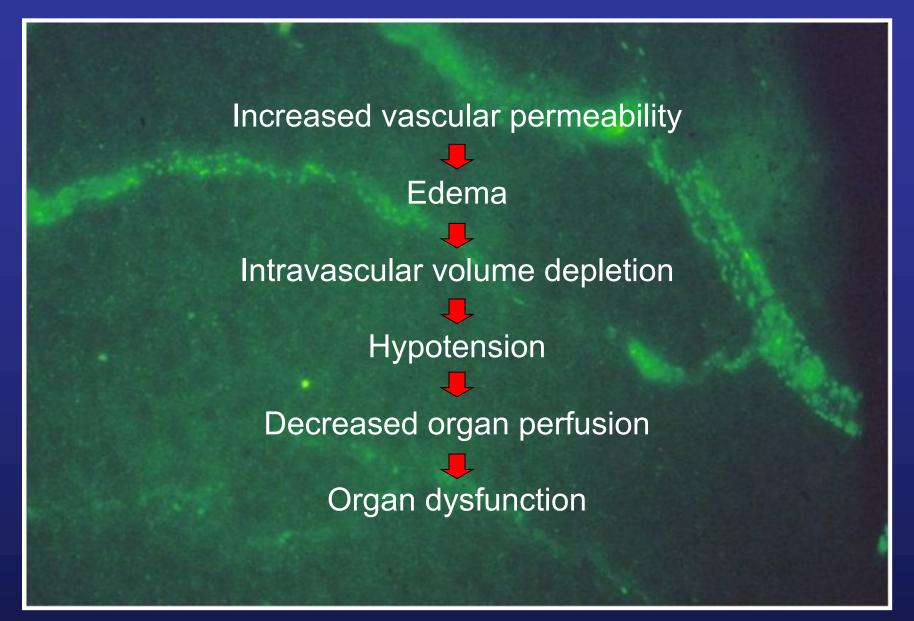
- Introduction
- Common clinical features
- Spotted fever group rickettsioses
- Typhus group rickettsioses
- Scrub typhus
- Ehrlichiosis and anaplasmosis
- Diagnosis
- Treatment


Vectors of Transmission


Taxonomy of representative human pathogens in the order *Rickettsiales*

Obligately Intracellular Organisms

Obligately Intracellular Organisms



Rickettsia and Orientia
= Endothelial cells

Ehrlichia chaffeensis = Monocytes

Anaplasma = Neutrophils

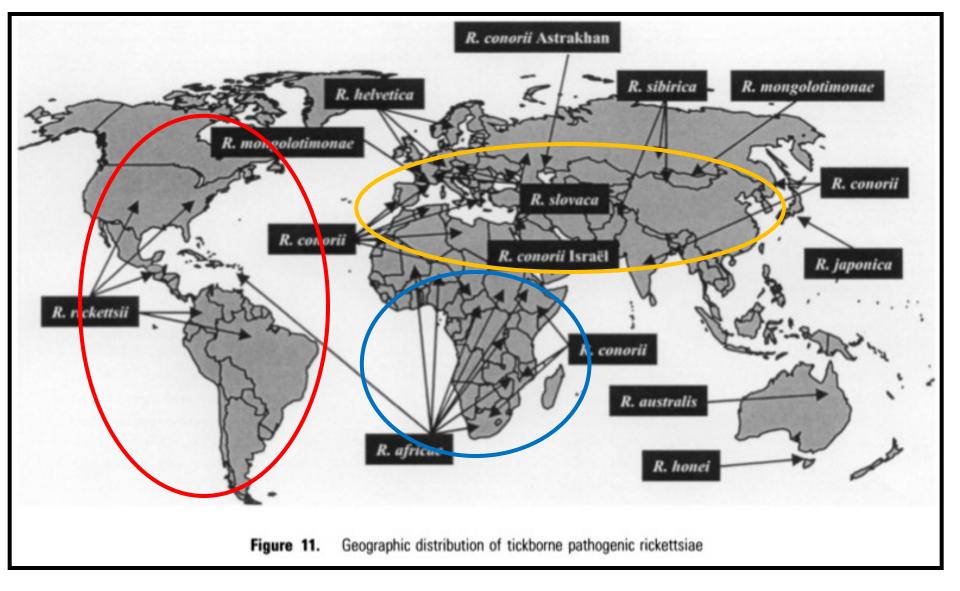
Endothelial Infection

- All are undifferentiated febrile illnesses with a flu-like quality
- Usually of sudden onset
- Universal or frequent manifestations include:
 - Fever
 - Headache
 - Myalgias
 - Malaise

		Frequency	
	~ 50%	~ 30%	< 15%
GI	Nausea/Vomiting	Abdominal pain	Diarrhea
Pulmonary		Cough	Respiratory failure
Renal			Acute Kidney Injury
Neurologic			Meningoencephalitis Confusion Stupor Coma

		Freq	uency	
	~ 50%	~ 3	80%	< 15%
GI	Nausea/Vom	iting Abdom	inal pain	Diarrhea
Pulmonary		Со	ugh	Respiratory failure
Renal				Acute Kidney Injury
Neurologic More Pat Organism		Less Pathogenic Organism		Meningoencephalitis Confusion Stupor Coma

Overlapping Laboratory Features


	Rickettsioses	Scrub typhus	Ehrlichiosis & Anaplasmosis
↑ LFT	++	+++	+++
↓ Platelets	++	++	+++
↓ WBC	+	+	++
↑ WBC	+	+	_
↓ Hbg	+	+	++
↓ Na⁺	++	-	-

Spotted Fever Group Rickettsioses

Epidemiology of Spotted Fever Group Rickettsiosis

Organism	Disease	Severity	Distribution
R. rickettsii	Rocky Mountain spotted fever	++++	Americans
R. conorii	Mediterranean spotted fever	+++	Mediterranean basin Africa, Asia
R. africae	African tick bite fever	++	Sub-Saharan Africa
R. parkeri	Maculatum disease	++	Americas
R. slovaca	Tick-borne lymphadenopathy	+	Europe
R. sibirica	North Asian tick typhus	++	Eurasia, Africa
R. honei	Flinders Island spotted fever	++	Southern Australia, Thailand
R. japonica	Japanese spotted fever	++	Japan, China
R. heilongjiangensis	Far Eastern spotted fever	++	Eastern Asia
R. aeschlimannii	Not named	+	Southern Europe, Africa
R. massiliae	Not named	+	South America, Europe
R. monacensis	Not named	+	Europe
Rickettsia 364D	Not named	+	California

R. rickettsii = Rocky Mountain spotted fever, Brazilian spotted fever

R. conorii = Mediterranean spotted fever, Boutonneuse fever, Israeli spotted fever, Indian tick typhus

R. africae = African tick bite fever

Rickettsia rickettsii - Rocky Mountain Spotted Fever

- United States
- Mexico
- Costa Rica
- Panama
- Columbia
- Brazil
- Argentina

Vectors of Rickettsia rickettsii

Dermacentor variabilis

Amblyomma cajennense

Dermacentor andersoni

Rhipicephalus sanguineus

RMSF - Clinical Features

Sudden Onset of:

- Fever 99 100%
- Myalgias 73 80%
- Headache 79 91%

Rash

- Occurs in ~ 90%
 - Day 1 in ~ 15%
 - Day 1 3 in ~ 50%
 - Day 5 6 in ~ 20%

GI Manifestations

 Nausea and/or vomiting 	38 - 56%
--	----------

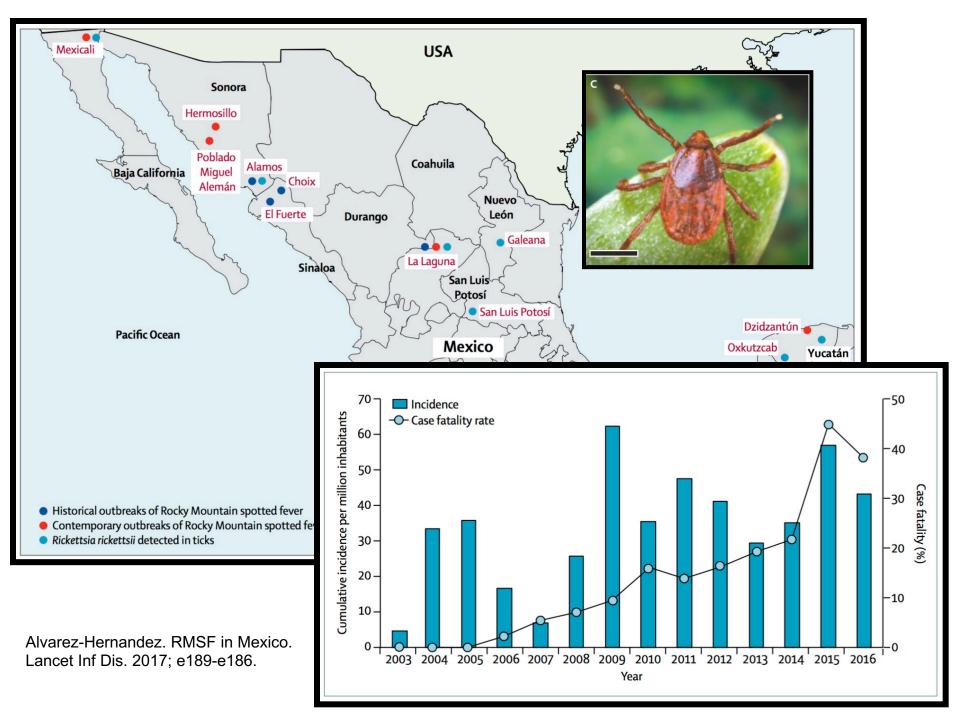
- Abdominal pain 30 34%
- Diarrhea 9 20%
- Jaundice 8 9%

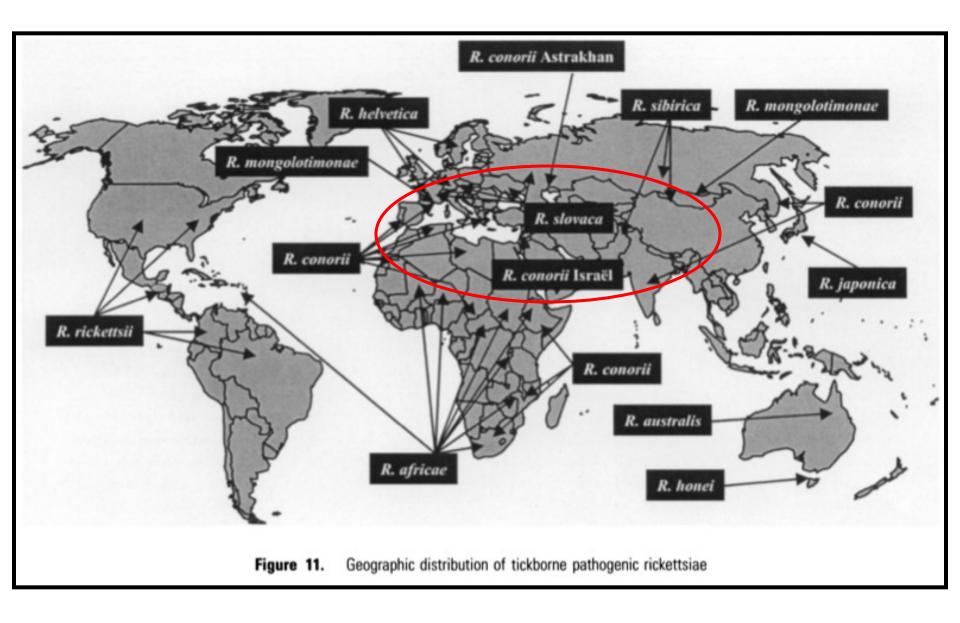
Neurologic Manifestations

 Confusion 	28%
-------------------------------	-----

- Stupor or delirium21 26%
- Ataxia 5 18%
- Coma 9 10%
- Seizures 8%
- CSF
 - Pleocytosis34 38%
 - Elevated protein30 35%

Rash of Rocky Mountain Spotted Fever





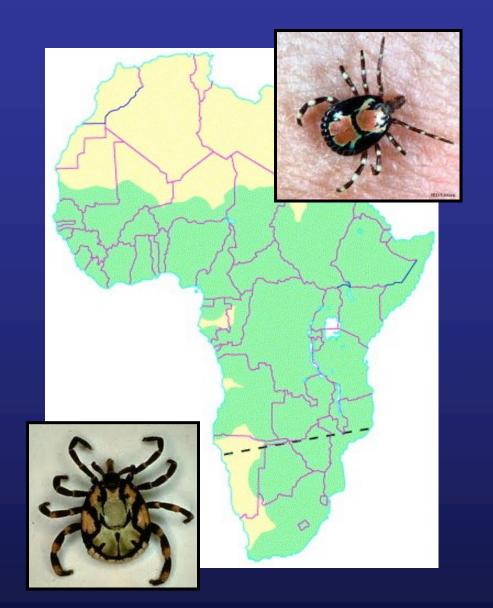
- Rash occurs in > 90% (only 50% in first 3 days of illness)
- Rash starts on wrists & ankles then progresses to trunk
- Rash on palms & soles (36 82%); after day 5 in 43%
- No inoculation eschar

Important Characteristics of RMSF


- Usually sporadic in most of U.S.; can occur in clusters in Mexico, Arizona, Brazil
- Usually very few ticks infected (R. rickettsii detrimental to tick life cycle)
- Damage to microcirculation -> hypovolemia -> gangrenous skin or digits (4%)
- Case fatality in U.S. (23% untreated; 4% treated)
- Case fatality upwards of 50% in Brazil and Mexico

R. conorii = Mediterranean spotted fever, Boutonneuse fever, Kenya tick typhus, Israeli spotted fever, Indian tick typhus, Astrakhan spotted fever

Rickettsia conorii - Mediterranean Spotted Fever


Rhipicephalus sanguineus (Brown dog tick)

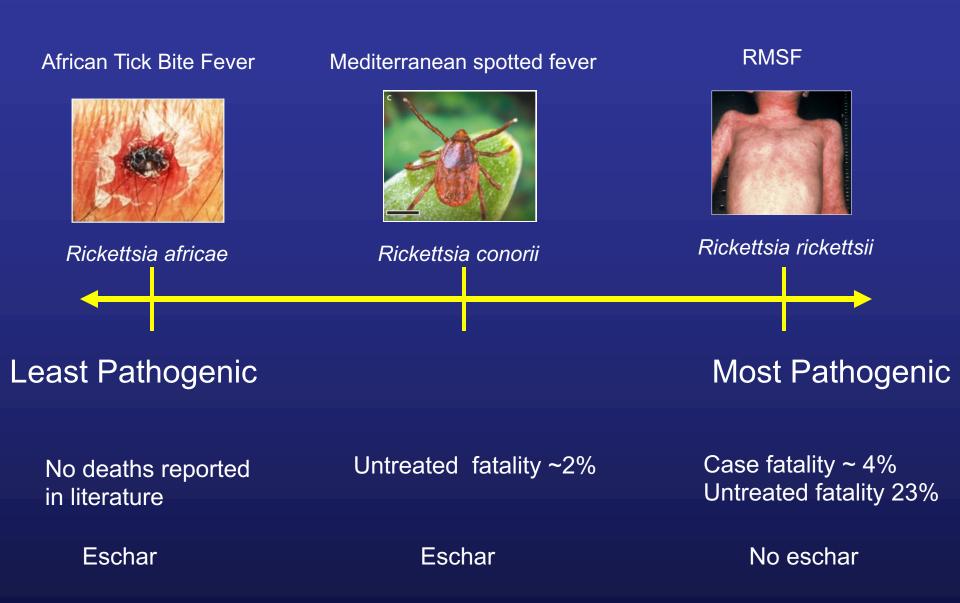
Eschar at site of tick bite

- Caused by the bite of the brown dog tick
- Fever 100%
- Myalgias 73 80%
- Headache 56%
- Rash 97%
- Eschar 72%
- Increased AST 35%
- Thrombocytopenia 25%
- Hyponatremia 25%
- Azotemia 6%
- Untreated case fatality ~2%

Rickettsia africae - African Tick Bite Fever

- Infection in those traveling to sub-Saharan Africa
- Most common SFG infection in travelers
- Amblyomma ticks are aggressive feeders
- Ticks frequently infected

Rickettsia africae - African Tick Bite Fever



- Eschar occurs in 95%
- Multiple eschars in 54%
- Adenopathy in 50%
- Macular rash in 50%

Eschar in a woman who removed several attached ticks while visiting Kruger National Park in South Africa.

 No deaths reported in literature

Pathogenicity of Rickettsiae

Typhus Group Rickettsioses

The Confusing Diseases Called Typhus

Greek word "tuphos" = smoke (refers to cloudy sensorium)

- Rickettsia prowazekii
 - Typhus
 - Epidemic typhus
 - Louse-borne typhus
 - Louse-borne epidemic typhus
 - Sylvatic typhus
 - Flying squirrel associated typhus
 - Brill-Zinsser Disease
 - Recrudescent typhus
 - Jail fever
 - Exanthematic typhus

- Rickettsia typhi
 - Murine typhus
 - Endemic typhus
 - Flea-borne typhus
 - Shop typhus
 - Mexican typhus or "Tarbadillo"
 - 21-day fever
- Orientia tsutsugamushi
 - Scrub typhus

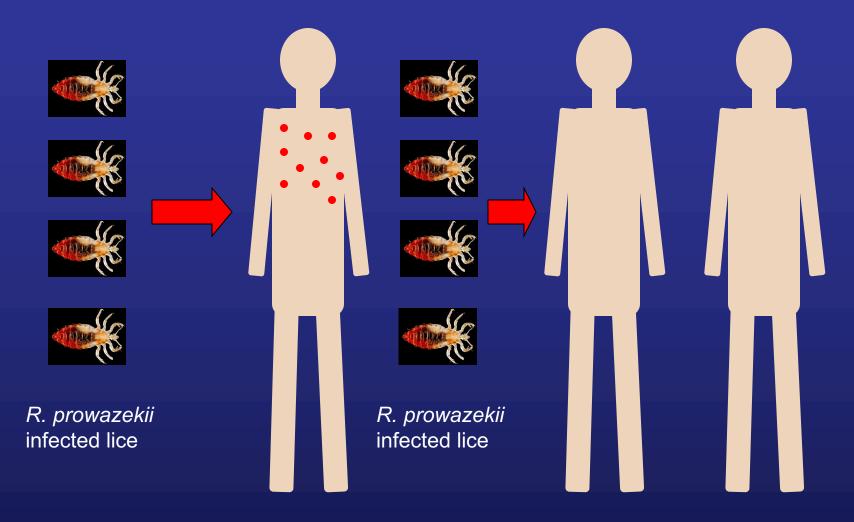
Rickettsia prowazekii – Typhus (Epidemic Typhus; Louse-Borne Typhus)

- Disease of war, famine, natural disaster, unsanitary conditions
- Usually during cold months
- Presence of macular rash is variable (starts on trunk and spreads centrally)
- Untreated mortality 50-60%; treated mortality ~4%.

Transmitted by the body louse (Pediculus humanus humanus)

 Recent outbreaks: Burundi, Rwanda, Congo, Algeria, Russia, Peru, France, Ethiopia

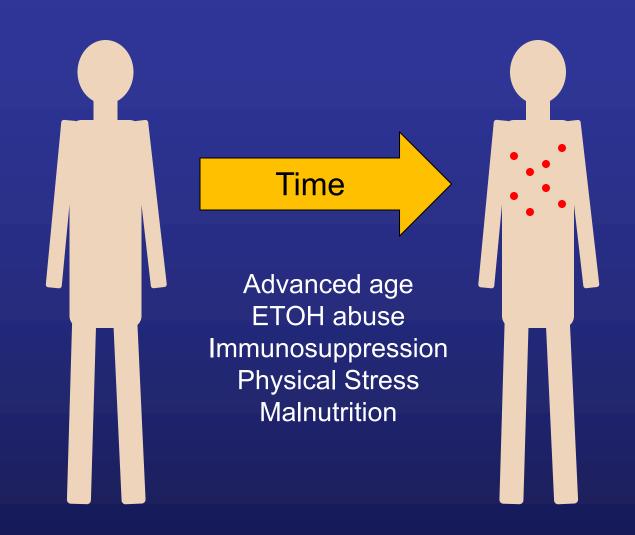
Typhus - Clinical Features


Symptoms	Laboratory Features
----------	---------------------

Fever	100%	Thrombocytopenia	43%
Headache	100%	Transaminitis	63%
Rash	38%	Hypoproteinemia	38%
Myalgias	100%		
Nausea/Vomiting	57%		
Cough	70%		

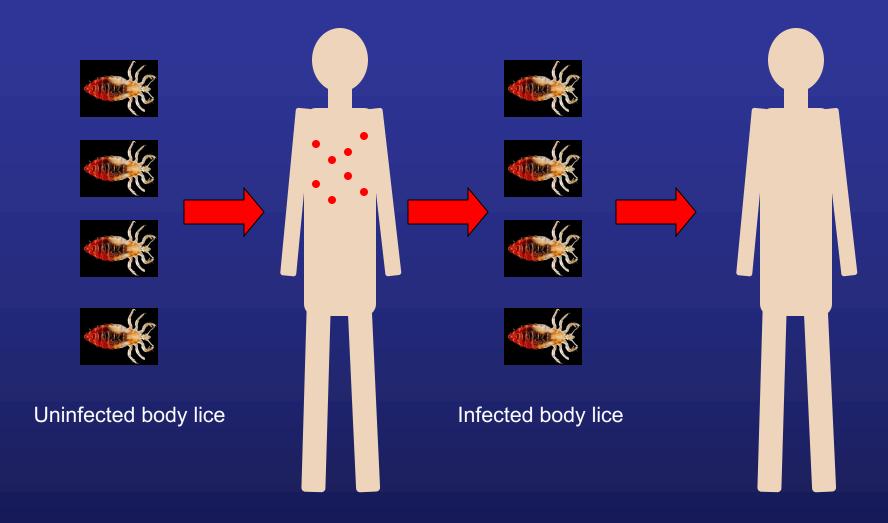
Fournier PE, et al. Human pathogens in body and head lice. Emerg Infect Dis. 2002; 8:1515-1518

Perine PL, et al. A clinico-epidemiological study of epidemic typhus in Africa. Clin Infect Dis. 1992; 14:1149-1158.


Typhus - Transmission

Infected

Susceptible


Recrudescent Typhus (Brill-Zinsser Disease)

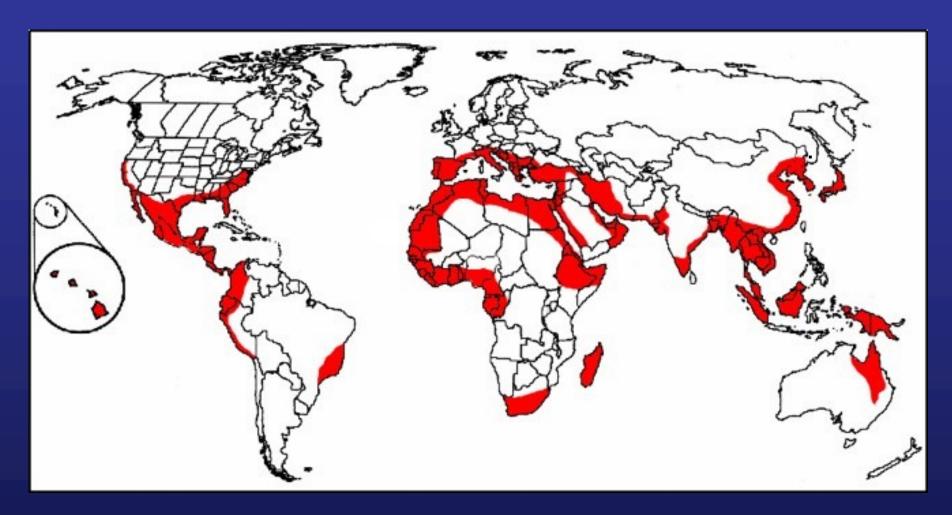
Latent Infection

Recrudescence

Typhus - Recrudescence

Recrudescence

Susceptible


Sylvatic typhus (Flying squirrel associated typhus)

- R. prowazekii has been isolated from Glaucomys volans
- Contact with flying squirrels has led to sporadic cases in the United States
- Flying squirrel associated typhus appears to be milder than louse-borne typhus
- Clusters of cases have been described

Glaucomys volans

Rickettsia typhi – Murine Typhus (Endemic Typhus; Flea-Borne Typhus)

Murine Typhus - Clinical Features

Symptoms:		Rash
Fever	98%	– Macular 49%
Headache	75%	– Maculopapular 29%
Chills	66%	Located on trunk88%
Rash	54%	Laboratory Foatures
Myalgias	46%	Laboratory Features – Leukopenia ~50%
Malaise	29%	– Leukoperiia 150 %– Thrombocytopenia ~50%
Nausea	48%	TrinembeeytepeniaTransaminitis70%
Vomiting	40%	– Hypoproteinemia ~45%
		– Hypoalbuminemia ~90%
History of flea bites	26%	– Hyponatremia ~60%
Rodent exposure	29%	Case Fatality < 1%

R. typhi - Transmission

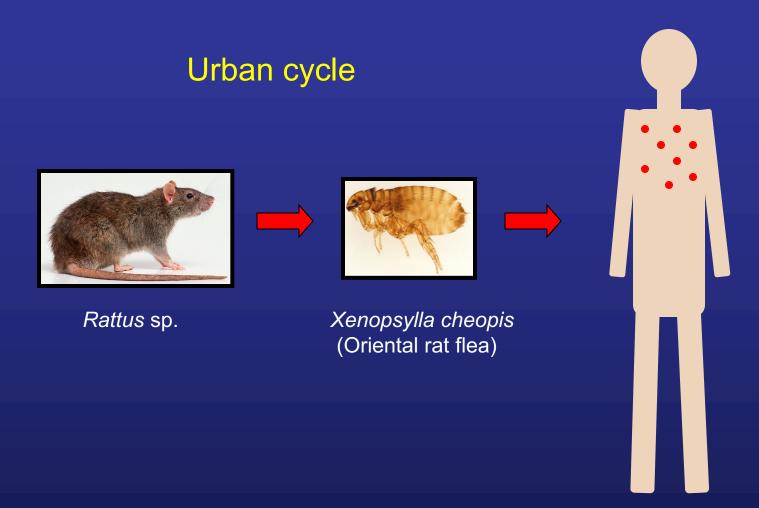
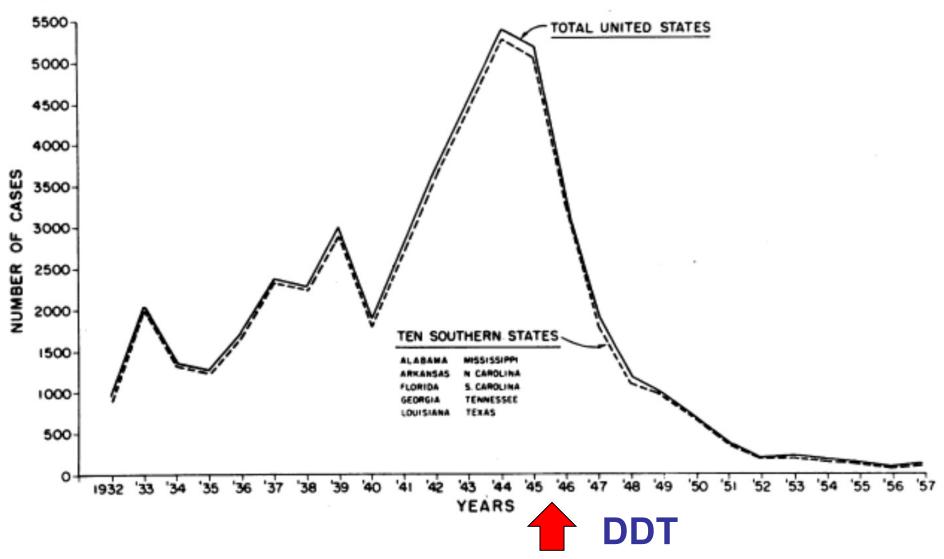
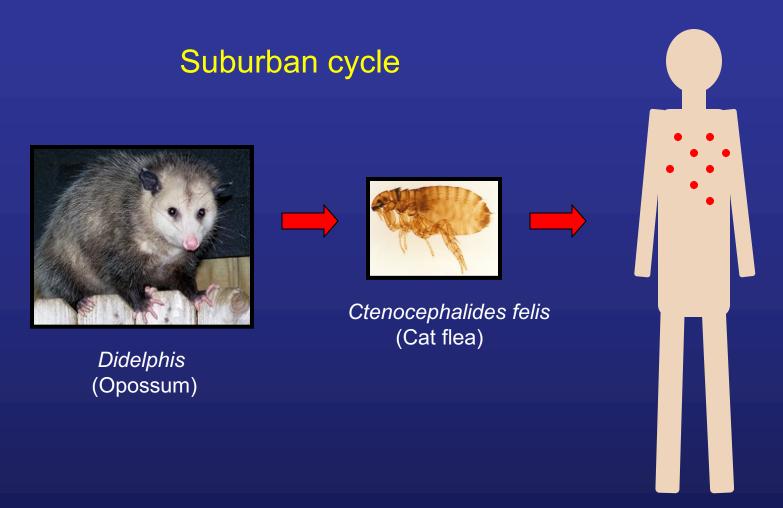




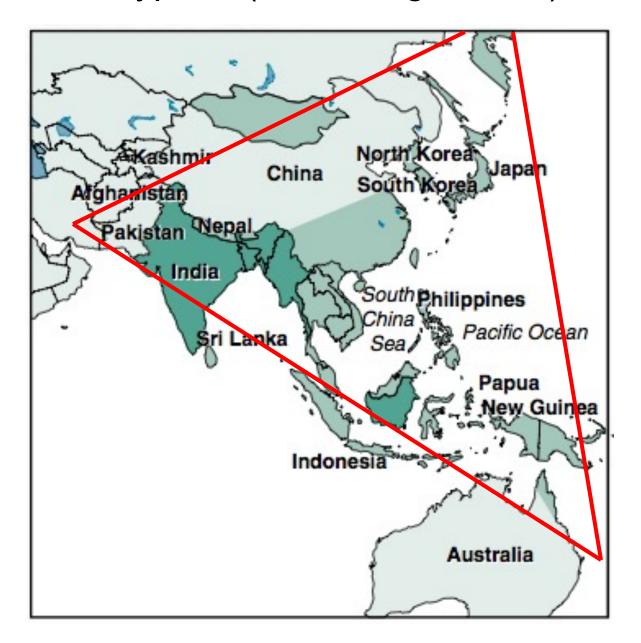
Figure 1. Annual total of reported murine typhus fever cases in the United States, 1932–57

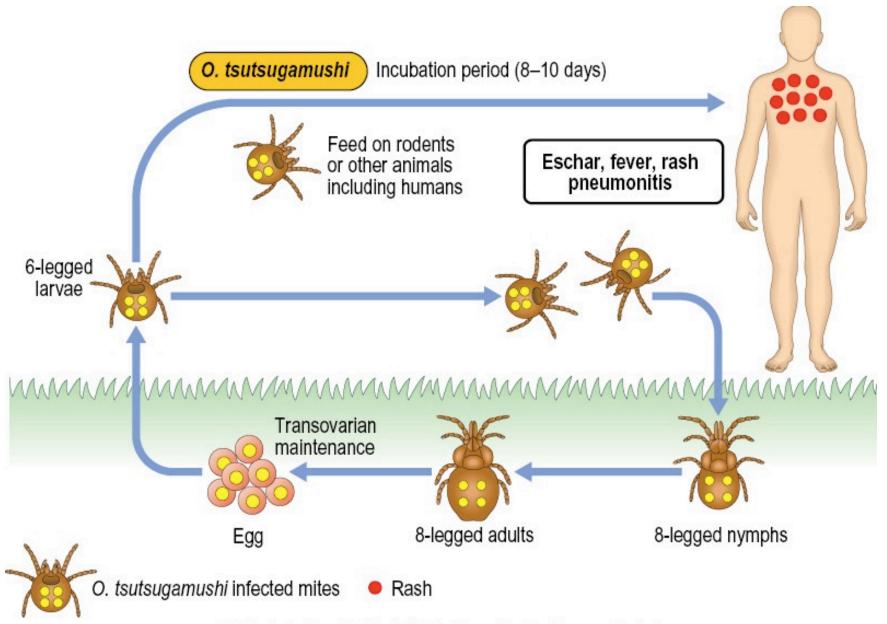
Love et al. Murine typhus investigations in southwestern Georgia. Pub Health Rep. 1960;75:429-440.

R. typhi - Transmission

Rickettsia typhi – Murine typhus

- Rash is macular and may be very faint
- Rash occurs in ~ 50%
- Flea bites or fleas in environment are often unnoticed
- Case fatality is ~ 0.4%


Scrub Typhus


Scrub Typhus – Orientia

- Reclassified from rickettsiae to separate genus in 1995
- Three species:
 - Orientia tsutsugamushi
 - Orientia chuto
 - Candidatus Orientia chiloensis
- Numerous O. tsutsugamushi strains
 - Karp, Kato, Gilliam (and many more)
 - Tremendous antigenic variation

Classic Scrub Typhus (O. tsutsugamushi) Distribution

Orientia tsutsugamushi is transmitted by the larval chigger

Scrub Typhus - Epidemiology

- Transmission occurs during the seasonal activity of the chigger.
 - During warmer months in more temperate regions
 - Year-round in more tropical regions
- Disease transmission occurs in rural, village, and suburban areas.

Inhabitants of city centers are not at risk.

Scrub Typhus - Signs & Symptoms

Illness begins suddenly after ~ 10 days of incubation

•	Fever	100%
	. • • • •	

•	Headache	95%
	1104440110	00/0

•	Myalgia	95%
	iviyaigia	00/0

•	Adenopathy	59%

•	Splenomegaly	59%

• Rash 27%

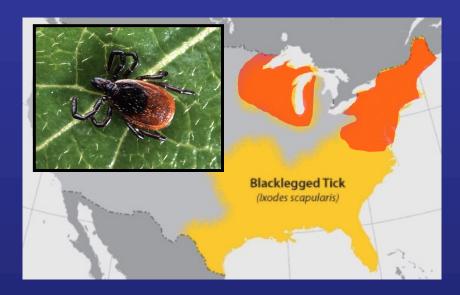
Scrub Typhus - Signs & Symptoms

- Eschar
 - Often with regional lymphadenopathy
 - Usually apparent by the time systemic symptoms appear
 - Often overlooked
- Can progress to cause:
 - Pneumonitis
 - Encephalitis
 - Shock

• Case fatality rate: 7 - 15%

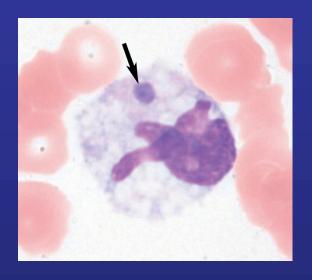
Scrub typhus in Chile – Candidatus Orientia Chiloensis

Weitzel et al. Endemic scrub typhus in South America. NEJM. 2016;375:954-961. Weitzel et al. Scrub typhus in continental Chile, 2016-2018. EID. 2019;25:1214-1217.

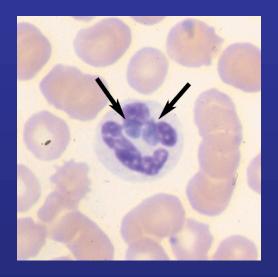

Ehrlichiosis and Anaplasmosis

Ehrlichia chaffeensis: Human monocytotropic ehrlichiosis

Lone Star Tick (Amblyomma americanum)


- Transmitted by A. americanum
- Occurs in southeast and southcentral U.S.
- Also occurs in Africa, South America, and Eastern Asia

Anaplasma phagocytophilum: Human granulocytotropic anaplasmosis


- Transmitted by I. scapularis
- Occurs in northeast and upper midwest U.S.
- Also occurs in northern Europe and Asia

Ehrlichia chaffeensis: Human monocytotropic ehrlichiosis

- Rash in ~ 35%
- Elevated transaminases, thrombocytopenia, and leukopenia frequent

Anaplasma phagocytophilum: Human granulocytotropic anaplasmosis

- Rash in < 10%
- Elevated transaminases, thrombocytopenia, and leukopenia frequent

Confirmed Cases of Infection with Anaplasmataceae

Huang et al. The Global Distribution and Risk Prediction of Anaplasmataceae species. eBioMed 2025;115:105722

Diagnosis

Diagnosis

Do not wait for laboratory confirmation to start therapy

- Serology
 - Most available diagnostic method for clinicians
- PCR
 - Not sensitive from blood for rickettsioses
 - More sensitive from tissue (eschar or rash) specimens
 - Better sensitivity for ehrlichiosis and anaplasmosis
- Isolation and Immunohistochemistry
 - Only available in the research setting

Serologic Diagnosis

- Diagnosis is retrospective
 - Antibodies rarely detected in first week of illness
- IFA for IgG is the gold standard
- Definitive serologic diagnosis:
 - Seroconversion from acute- and convalescent-phase sera
 - 4-fold titer increase from acute- and convalescent-phase sera
- Single serum samples are problematic
 - Reactive specimens could represent old infection
 - Non-reactive specimens occur during early disease

Serologic Diagnosis

- Antibodies to SFG antigens cross react with other SFG antigen
 - e.g., anti-R. africae serum reacts against R. rickettsii antigen
- Antibodies to typhus group antigens cross react with other typhus group antigen
 - e.g., anti-R. prowazekii serum reacts against R. typhi antigen
- Antibodies to Orientia cross react variably to antigen of heterologous strains
- Anaplasma and Ehrlichia serology is separate but there may be some variable to weak cross reactivity

Treatment

Treatment Summary

	Doxycycline	Chloramphenicol*	Quinolones	Azithro	Rifampin
RMSF	Preferred	Alternative			
Typhus	Preferred	Alternative			
Murine typhus	Preferred	Alternative	Alternative? (+/-)	Alternative? (+/-)	
Other SFG <i>Rickettsia</i>	Preferred	Alternative	Alternative? (+/-)	Alternative? (+/-)	
Scrub typhus	Preferred	Alternative		Alternative	Alternative
Ehrlichia / Anaplasma	Preferred				Alternative

^{*} Not available in the U.S.

Treatment

Severe infections caused by *Rickettsia* species (RMSF and louse-borne epidemic typhus)

- Doxycycline 100 mg oral BID X 7 days
- Chloramphenicol 50 75 mg/kg/day X 7 days

Less severe infections caused by *Rickettsia* species (other SFGR and murine typhus)

- Doxycycline 100 mg oral BID X 7 days
- Chloramphenicol 50 75 mg/kg/day X 7 days
- Ciprofloxacin 500 BID or levofloxacin 500 QD X 7 days

Treatment

Scrub typhus

- Doxycycline 100 mg oral BID X 7 days
- Chloramphenicol 50 75 mg/kg/day X 7 days
- Azithromycin 500 mg X 3 days

Anaplasmosis / Ehrlichiosis

- Doxycycline 100 mg oral BID X 7 14 days
- Rifampin 300 mg oral BID X 7 10 days

Treatment: Tetracyclines

- Minocycline is as effective as doxycycline
- Tetracycline hydrochloride has more GI intolerance
- Short courses of doxycycline are safe for children
- Doxycycline appears safe in pregnancy and doesn't seem to have adverse effects on developing fetus
- True doxycycline allergy is exceedingly uncommon

Susceptibility to Parenteral Tetracycline-like Agents

TABLE 1 Activities of eravacycline, omadacycline, and tigecycline against 10 rickettsial species

	MIC (μg/ml)				
Species or strain ^a	Eravacycline	Omadacycline	Tigecycline	Doxycycline	
Rickettsia africae	≤0.06	0.5	0.5	≤0.06	
Rickettsia australis	≤0.06	0.5	1.0	≤0.06	
Rickettsia conorii India tick typhus strain	≤0.06	0.5	0.5	≤0.06	
Rickettsia conorii Malish 7 strain	≤0.06	1.0	1.0	≤0.06	
Rickettsia honei	≤0.06	1.0	0.5	0.13	
Rickettsia parkeri	≤0.06	0.5	0.5	0.13	
Rickettsia rickettsii	≤0.06	1.0	0.5 ^b	0.13	
Rickettsia sibirica	≤0.06	1.0	1.0	≤0.06	
Rickettsia slovaca	≤0.06	2.0	1.0	0.13	
Rickettsia typhi	≤0.06	0.5	1.0	≤0.06	
MIC_{50}^{c}	≤0.06	0.5	0.5	≤0.06	
MIC ₉₀ ^c	≤0.06	1.0	1.0	0.13	

Quade BR, et al. In vitro susceptibility of Rickettsia species to eravacycline, omadacycline, and tigecycline. Antimicrobial Agents and Chemotherapy 2021; 65: e00665-21

Thank You

Lucas Blanton lsblanto@utmb.edu