Medical College, Valhalla, NY, United States, ${ }^{10}$ Georgetown University School of Medicine, Washington, DC, United States, ${ }^{11}$ University of Florida School of Medicine, Boca Raton, FL, United States, ${ }^{12}$ Tufts University School of Veterinary Medicine, Grafton, MA, United States, ${ }^{13}$ Cornell University School of Medicine, Boston, MA, United States
Human babesiosis is a tick-borne malaria-like illness that generally resolves without complication after administration of atovaquone and azithromycin or clindamycin and quinine. Although failure of antibiotic therapy to clear Babesia microti parasitemia and associated symptoms in immunocompromised hosts has been reported, the pathogenesis, clinical course, and optimal treatment regimen remain uncertain. We used a casecontrol strategy to compare the immunologic status, clinical course, and treatment of 14 immunocompromised subjects who suffered morbidity or death following persistence of Babesia microti infection despite repeated courses of anti-babesial antibiotics with those of 46 case controls who cleared infection after a single course of standard anti-babesial therapy. All of the case subjects were immunosuppressed at the time of acute babesiosis compared to fewer than 10 percent of controls. Most subjects experiencing persistent babesiosis suffered from hematologic malignancies and were asplenic or had received immunosuppressive therapy shortly before initial babesial illness. The cases were more likely than control subjects to require hospital admission and to suffer hematologic, pulmonary, and renal complications from acute or relapsed babesiosis. Three case subjects died of complications related to their babesial infection. Resolution of persistent disease occurred in 11 patients after 3 to 10 courses of therapy and administration of a final antimicrobial regimen for at least 2 weeks after babesia were no longer seen on thin blood smear. In conclusion, immunocompromised patients infected by B. microti are at risk for the development of refractory babesiosis despite a course of standard anti-babesial therapy. In order to overcome persistent disease and achieve cure, such patients require an extended course of antimicrobial therapy, generally administered for at least 2 months, including 2 weeks of therapy beyond the time piroplasms are no longer detectable on blood smear.

1046

CLINICAL FEATURES OF THE HUMAN BARTONELLOSIS (ACUTE CARRION'S DISEASE) IN THE NORTHERN FOREST OF PERU

Paul E. Pachas ${ }^{1}$, Jorge A. Chancafe ${ }^{2}$, Deysi Medina², Zoila Villegas ${ }^{3}$, Lucinda Troyes³, Nelson Solorzano ${ }^{4}$, Manuel Cespedes ${ }^{5}$, Elizabeth Anaya5, Victor Arenas², Bertha Granda², Alexander Canelo ${ }^{3}$, Luis A. Suarez-Ognio ${ }^{1}$
${ }^{1}$ General Directorate of Epidemiology-Ministry of Health, Lima, Peru, ${ }^{2}$ San Ignacio Health Center, Cajamarca Department, Peru, ³Jaen Directorate of Health, Cajamarca Department, Peru, ${ }^{4}$ Caraz Hospital, Ancash Department, Peru, ${ }^{5}$ National Institute of Health, Lima, Peru

Carrion's Disease is a reemerging disease in Peru with a broad clinical spectrum. Coinfections and superinfections are frequent, but this has been poorly investigated in endemic area. Our aim is to describe the clinical features of the acute Carrion's Disease (ACD) in the Northern forest of Peru as well as the coinfections. A cohort study was performed in the San Ignacio Health Center, Cajamarca department, located in the North forest of Peru, between July 2004 and June 2005. All patients with fever, without known source of infection and without previous antibiotic treatment, who turned to the San Ignacio Health Center, were enrolled. During the first consultation, a clinical-epidemiological survey was run and blood samples for culture, thin and thick smear, hematologic and biochemistry analysis, serological tests for infection by Leptospira, Brucella, Salmonella typhi and paratiphy were taken. People with positive blood culture to Bartonella were considered as ACD. From 476 enrolled 87 were cases of ACD. The median age of the cases was 14 years old (4 months - 82 years) and 52,3\% were male; the main symptoms were general malaise 97,7\%, headache 89\%, arthralgias 78,2\%, chills 75\%, hyporexia 74\%, myalgias 64,4\%, abdominal pain 61%, dizziness 45,9\%, cough 45,9\%, conjunctival injection 35\%, retroocular pain 26,4\%,
vomits 23% and diarrhea 21%. The main signs were hepatomegaly 19%, conjunctival pallor $17,2 \%$, petequiae 11% and splenomegaly 8%. The main coinfections were leptospirosis 16,7\% (8/48), rickettsiosis 4\% (2/49) and P. vivax malaria $1,2 \%$. The median of hemoglobin was $12,5 \mathrm{~g} / \mathrm{dl}(5.8-$ 16.1). Sensitivity of blood smear was $29,8 \%$. Only 5.5% were inpatients and the fatality rate was 0%. In conclusion, unspecific symptoms are the most reported and retroocular pain is described for the first time in ACD. The conjunctival pallor was unusual and the main coinfections are leptospirosis, rickettsiosis and malaria. The blood smear has a low sensitivity for diagnostic of ACD.

1047
REDUCTION OF INFANT MORTALITY: LESSONS FROM CEARÁ STATE, NORTHEASTERN BRAZIL (1995-2002)
Anastacio Q. Sousa ${ }^{1}$, Francisca M. Andrade², Telma B. Queiroz³, Maria P. Martins ${ }^{3}$, Richard L. Guerrant ${ }^{4}$
${ }^{1}$ Federal University of Ceara, Fortaleza, Brazil, ${ }^{2}$ UNICEF, Fortaleza, Brazil, ${ }^{3}$ Secretariat of Health of Ceara State, Fortaleza, Brazil, ${ }^{4}$ University of Virginia, Charlottesville, VA, United States
Infant mortality (IM) remains a very important public health problem worldwide. Substantial reductions in IM were observed in the state of Ceará, northeastern Brazil, after the implementation of a state wide program. Ceará is one of most underprivileged states in the region in terms of natural resources and had a high infant mortality; 80/1,000 live births in 1994. The IM was associated with the lack of exclusive breast-feeding, insufficient prenatal care, inadequate water supplies, poor sanitation, and illiteracy of mothers. The state ministry of health implemented the following measures: 1) It increased the number of community health workers (CHW). Each CHW visited 100 families monthly, provided health and nutrition education, referred pregnant women for prenatal care and sick persons to the health unit, taught water chlorination and supplied chlorine, and collected health data. 2) It greatly expanded implementation of Family Health Teams of one nurse, one physician, and 10 CHWs for every 1,000 families. 3) A major breast feeding campaign was launched. It included a) training all health professionals on the importance and practice of breast feeding and b) using postal workers to deliver information to pregnant women encouraging prenatal care and breast-feeding. 4) Kangaroo Mother Care was initiated to provide supplemental care for underweight infants. 5) Human breast milk banks were created in maternity centers. 6) Prizes were awarded to child-friendly hospitals where 100\% of babies delivered were breast-fed exclusively up to 6 months. From 1995-2002 IM rate in Ceara decreased from 80 to 25/1000, a 68\% reduction; exclusive breast-feeding (up to 6 months) increased from 38\% to 64\%, an increment of 68\%; and prenatal care increased from 68 to 90%, an increment of 32%. While incentivized breast feeding and other aspects of the program were directly responsible for decreased IM, successful implementation of the program was dependent on political will and cooperation among multiple agencies.

1048

IDENTIFICATION OF DEVELOPMENTALLY REGULATED GENES IN ENTAMOEBA HISTOLYTICA

Gretchen M. Ehrenkaufer, Upinder Singh

Stanford University, Stanford, CA, United States
Entamoeba histolytica is a protozoan parasite and the second leading cause of parasitic death worldwide. There are two stages in the life cycle: a trophozoite that causes disease and a cyst form that transmits disease. Encystation is necessary for transmission of the parasite to new hosts, hence, blocking encystation would prevent spread of the disease. Unfortunately, research into the regulation of this developmental process has been severely hampered by the lack of an in vitro system of encystation in E. histolytica. We used E. histolytica clinical isolates, which contain cysts and a whole-genome microarray-based expression profiling to examine the transcriptomes of E. histolytica cysts and trophozoites.

We identified that $\sim 15 \%$ of the 9,938 annotated amebic genes are developmentally regulated (672 cyst-specific genes and 767 trophozoitespecific genes). Among the cyst-specific genes included potential signal transducing genes such protein kinases and G-protein coupled receptors, which may play a role in the regulation of the developmental program. In order to identify the molecular signature that initiates the encystation program, we are functionally characterizing a Myb-domain containing gene, which was upregulated in cysts. We have confirmed that the homologue of this gene is upregulated in Entamoeba invadens cysts suggesting a potential conserved function in Entamoeba development. Furthermore, we have demonstrated that overexpression of the Mybdomain gene in E. histolytica trophozoites initiates a transcriptional profile consistent with encystation, including expression of cyst wall genes. Studies to identify the promoter motifs bound by the Myb protein are underway. This work will help to delineate the molecular basis of stage conversion in Entamoeba histolytica and lead to potential therapeutic measures against the cyst form of the parasite.
(ACMCIP Abstract)

1049

CYSTEINE PROTEASE ACTIVITY IN SCHISTOSOMA MANSONI RESISTANT AND SUSCEPTIBLE BIOMPHALARIA GLABRATA SNAILS

Jocelyn C. Myers ${ }^{1}$, Wannaporn Ittiprasert ${ }^{1}$, Andre' Miller¹, Clarence M. Lee ${ }^{2}$, Matty Knight ${ }^{1}$, Nithya Raghavan ${ }^{1}$
${ }^{1}$ Biomedical Research Institute, Rockville, MD, United States, ${ }^{2}$ Howard University, Washington, DC, United States
A strong body of evidence exists for a role of hydrolytic enzymes in the defense of mollusks against invading parasites. It has been shown that the levels of these enzymes are elevated in Biomphalaria glabrata snails following exposure to pathogens such as parasitic helminths. The innate immune response of B. glabrata to Schistosoma mansoni is mediated both by the cellular (hemocytes) and plasma (hemolymph) components of the snail's internal defense system (IDS). In response to the invading parasite, the IDS is triggered within a short period post-exposure. This results in encapsulation of the parasite, where the action of hydrolytic enzymes released from the hemocytes and hemolymph may facilitate the death of the parasite. In the present study, SDS-page gelatin zymology was used to qualitatively determine proteolytic enzyme activity in resistant (BS-90 and LAC strains) and susceptible (NMRI strains) pre- and post- exposure to S. mansoni. Results indicated that protease activity was higher in parasite resistant compared to susceptible snails with most activity residing in the posterior, hepatopancreas, region. Enzyme activity corresponded to a complex high molecular weight smear (>220 to 66 kDa) that was inhibited by the cysteine protease inhibitor E64. Because parasite exposure was found to affect the levels of cysteine protease activity in the snail, a cDNA library was made from the hepatopancreas from which several cysteine protease encoding transcripts were identified. One of these transcripts encoded the full-length cDNA for the cysteine protease, cathepsin B. Nucleotide and amino acid sequence analysis of the snail cathepsin B gene showed significant matches to schistosome and vertebrate (human and mouse) orthologues. In B. glabrata, Cathepsin B was found to occur as a single-copy gene. Genetic variation in the Cathepsin B locus in resistant and susceptible snails was investigated by Restriction Fragment Length Polymorphism (RFLP) analysis and results revealed the occurrence of polymorphisms between these snails. Real-time Reverse Transcriptase (RT)PCR was used to determine the regulation of the Cathepsin B transcripts in resistant and susceptible snails pre-and post exposure to miracidia. Results consistently showed that up-regulation of Cathepsin B occurs shortly after parasite exposure of resistant but not susceptible snails.
(ACMCIP Abstract)

1050

IDENTIFICATION OF IMMEDIATE RESPONSE - GENES DOMINANTLY EXPRESSED IN BIOMPHALARIA GLABRATA SNAILS UPON EXPOSURE TO SCHISTOSOMA MANSONI INFECTION

Wannaporn Ittiprasert ${ }^{1}$, Andre Nathaniel Miller¹, Vish M. Nene², Najib M. El-Sayed ${ }^{3}$, Jocelyn Celeste Myers ${ }^{1}$, Matty Knight ${ }^{1}$
${ }^{1}$ Biomedical Research Institute, Rockville, MD, United States, ${ }^{2}$ Institute of Genome Sciences and Development of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States, ${ }^{3}$ Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, United States

Intermediate snail hosts of parasitic infections are an integral part of the transmission of intractable chronic diseases such as schistosomiasis. An understanding of the snail host-parasite relationship at the molecular level is probably the best chance for the identification of novel tools that will help block parasite development in the snail. Non-self responses in Biomphalaria glabrata towards parasite infection depend on an innate defense system. This system is characterized by an immediate early response against miracidia that eliminates the parasite. In this study, we focused on the identification of immediate response-transcripts that may be involved in miracidia destruction before they develop into sporocysts. Suppression subtractive hybridization (SSH) was used to reveal the upregulation of dominantly expressed transcripts in either resistant (LAC) or susceptible (NMRI) snails 5 hrs post exposure to Schistosoma mansoni. SSH cDNA libraries were also constructed from parasite- exposed juvenile resistant (BS-90) and susceptible (NMRI) snails. One thousand nine hundred and twenty Expressed Sequence Tags (ESTS) were generated from these libraries and clustered. We identified 41 dominantly expressed genes from parasite-exposed susceptible snails. These included transcripts encoding antioxidant, cell structure/signaling, immune related, metabolic/ mitochondrial, transduction/translation and various enzymes. From the resistant snail-specific SSH libraries, ESTs generated included 25 genes that were up-regulated in these parasite-exposed snails. These included a similar repertoire of gene transcripts as those found in the susceptible parasite-exposed snails. Real time PCR was used to verify the specificity of transcription in resistant and susceptible snails at different times postexposure. Immediate defense response genes were identified from the resistant snail. These included cytidine deaminase and 2 defense-related transcripts that were dramatically up-regulated shortly after exposure. Similarly, results showed that several receptor-encoding transcripts, including lectin-like receptor, low density lipoprotein receptor and receptor for protein kinase C, were significantly up-regulated in exposed susceptible but not in resistant snails. Differences in the relative expressions of the SSH transcripts identified in resistant and susceptible snails pre-and post exposure will be discussed.
(ACMCIP Abstract)

1051

ANTI-TRANSMISSION DNA VACCINE FOR SCHISTOSOMIASIS JAPONICA IN CHINA

Akram A. Da'Dara', Li Yuesheng², Tie Xiong², J. Zhou², Gail M. Williams ${ }^{3}$, Donald P. McManus ${ }^{4}$, Feng Zheng ${ }^{5}$, Xinling Yu², Donald A. Harn ${ }^{1}$
${ }^{1}$ Harvard School of Public Health, Boston, MA, United States, ${ }^{2}$ Hunan Institute of Parasitic Diseases, Yue Yang City, China, ${ }^{3}$ University of Queensland, Herston, Australia, ${ }^{4}$ Queensland Institute of Medical Research, Herston, Australia, ${ }^{5}$ National Institute of Parasitic Diseases, Shanghai, China
Despite intensive control efforts, schistosomiasis remains an endemic, zoonotic disease of major public health importance in China. In the marsh and lake regions of China, water buffalo account for approximately
75% of disease transmission. In addition to acting as the major reservoir,
infected water buffalo often experience poor growth and weight gain compared to non-infected animals. Thus, interventions which reduce schistosome infection in buffalo will be beneficial to buffalo health and aid in reducing disease prevalence in humans. In this regard, a mathematical model predicted that an anti-fecundity vaccine which reduces fecal egg output in water buffalo by $40-45 \%$ in conjunction with praziquantel treatment will significantly lead to reduction in transmission of schistosomiasis. In this study, we tested the ability of four schistosomeDNA vaccine constructs to reach these levels in water buffalo. The DNA vaccine constructs encode the glycolytic enzyme triose phosphate isomerase (SjCTPI) or the tetraspanin 23 kDa integral membrane protein (SjC23) or the same antigens fused to the N -terminus end of the bovine heat shock protein 70 (SjCTPI-Hsp70 and SjC23-Hsp70). We found that compared to buffalo vaccinated with the control plasmid DNA (pVAX), vaccination with SjCTPI-Hsp70 or SjCTPI plasmids reduced worm burdens by 51.2% and 41.5% respectively and importantly, fecal miracidialhatching was reduced by 52.1% and 33.2% respectively. Vaccination with SjC23-Hsp70 and SjC23 plasmids reduced worm burdens by 50.9% and 45.5% respectively and fecal miracidial-hatching by 52.0% and 47.4%. Thus both the SjCTPI-Hsp70 and SjC23-Hsp70 plasmid DNA vaccines exceeded the level of protection predicted by the mathematical model to significantly reduce transmission of schistosomiasis in the lakes and marsh regions of China. These data support the use of either of these two vaccines in a field-based intervention to determine if vaccination of buffalo will reduce transmission of schistosomiasis in China.
(ACMCIP Abstract)

1052

A DNA VACCINE ENCODING A SAND FLY SALIVARY YeLLow related protein (LIM11) CONFERS PROTECTION AGAINST CHALLENGE WITH LEISHMANIA MAJOR IN THE PRESENCE OF LUTZOMYIA LONGIPALPIS SALIVARY GLAND homogenate

Luiz F. Oliveira, Regis B. Gomes, Shaden Kamhawi, Clarissa Teixeira, Dia-eldin Elnaiem, Jesus G. Valenzuela
National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
Sand fly salivary proteins are injected in the host skin during blood meal and they act helping the feeding process by counteracting the coagulation and inflammatory cascades. Moreover, immune responses to sand fly bites or salivary gland homogenate from Phlebotomus papatasi were previously shown to confer protection against Leishmania major infection. The correlates of protection were a delayed type hypersensitivity (DTH) response with a Th1 profile in the presence of interferon γ. In order to identify a salivary protein from Lutzomyia longipalpis that induces a DTH response and potentially protect against Leishmania infection, we cloned in the mammalian expression vector VR2001-TOPO, the 17 transcripts encoding the most abundant Lu. longipalpis salivary proteins. We found two molecules, LJM11 (44 kDa salivary protein) and LJL143 (33 kDa salivary protein), that induced a DTH response in C57BL/6 mice. Since, there is no model to test protection to visceral leishmaniasis in mice; we tested if vaccination with these two plasmids could protect mice against L. major in the presence of $L u$. longipalpis saliva. Mice vaccinated intradermally, three times, in the ear with 5ug of the purified plasmid LJM11 were protected against the L. major infection. No apparent protection was observed with LJL143 or other antibody producing salivary proteins. Evaluation of the immunological mechanisms of protection with the expressed recombinant LJM11 protein is underway. This functional genomic approach based on DNA immunization and identification of plasmids producing a cellular immune response allowed us to narrow down the number of potential vaccines candidates and the identification of a protective molecule from the salivary gland of this sand fly.
(ACMCIP Abstract)

MULTIPLY PARASITIZED ERYTHROCYTES ARE ASSOCIATED WITH INCREASED SEVERITY OF MALARIA

Lindsey Turnbull ${ }^{1}$, Nicholas Connors ${ }^{1}$, Karl Seydel ${ }^{2}$, Danny Milner ${ }^{3}$, Linda Kalilani ${ }^{4}$, Miriam Laufer ${ }^{5}$, Christopher Plowe ${ }^{5}$, Terrie Taylor ${ }^{2}$
${ }^{1}$ Blantyre Malaria Project, Blantyre, Malawi, ${ }^{2}$ College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States, ${ }^{3}$ Brigham and Women's Hospital, Boston, MA, United States, ${ }^{4}$ University of Malawi College of Medicine, Blantyre, Malawi, ${ }^{5}$ University of Maryland School of Medicine, Baltimore, MD, United States
The ability of Plasmodium falciparum to invade host erythrocytes efficiently contributes to the severity of disease caused by this, the most lethal of the human malaria species. Observations from the Queen Elizabeth Central Hospital Paediatric Research Ward in Blantyre, Malawi suggest malaria patients with high numbers of erythrocytes with multiple parasites (EMPs) are more severely ill. We examined pretreatment thin smears from children with cerebral malaria ($n=56$) and uncomplicated malaria ($n=98$). For each slide the number of ring stage parasites per erythrocyte was counted and the peripheral parasitemia was calculated. Normally distributed data were analyzed using t-tests for continuous variables and chi-squared tests for categorical variables. In children with cerebral malaria and in those with uncomplicated malaria, there was a positive correlation between numbers of EMPs and parasitemia ($r^{2}=.48$ vs.37, respectively). After controlling for parasitemia, the difference between the groups remained significant. The mean percentage of EMPs was higher for cerebral malaria patients than for uncomplicated patients ($5.5 \mathrm{vs} .3 .0, \mathrm{p}<.001$). More cerebral malaria patients had erythrocytes infected by three or more ring stage parasites than uncomplicated patients (39% vs. 12%, $\mathrm{p}<.001$). The mean percentage of EMPs was higher for cerebral patients with a fatal outcome $(28 / 56)$ than those who survived $(28 / 56)$ (6.8 vs. $4.3, \mathrm{p}<.05$). In conclusion, our data suggest a strong relationship between the number of EMPs and the severity of malaria illness. The biological basis of this phenomenon remains to be elucidated but may involve degree of anemia, intensity of sequestration or a distinct parasite phenotype. In vitro data relating to these possibilities will be presented.

1054

IN UTERO SELECTION AT THE FLT1 LOCUS IN A MALARIAENDEMIC AREA

Atis Muehlenbachs ${ }^{1}$, Michal Fried ${ }^{2}$, Jeff Lachowitzer ${ }^{2}$, Theonest K. Mutabingwa ${ }^{3}$, Patrick E. Duffy ${ }^{2}$
${ }^{1}$ University of Washington, Seattle, WA, United States, ${ }^{2}$ Seattle Biomedical Research Institute, Seattle, WA, United States, ${ }^{3}$ National Institute of Medical Research, Dar es Salaam, United Republic of Tanzania
Placental malaria (PM) is a major cause of neonatal mortality, but its effect on pregnancy loss is less clear. Soluble fms-like tyrosine kinase 1 (sFLT1) is secreted by fetal cells of the placenta into the maternal circulation during PM of first-time mothers, and may be related to preeclampsia. We hypothesize that fetal FLT1 genotype may differentially promote survival for the fetus of first versus later pregnancies. Maternal and infant samples were provided by Tanzanian women aged 18 to 45 years delivering at the Muheza Designated District Hospital. Genomic DNA was extracted from filter paper or from frozen blood pellets. Genotypes from 1159 individuals were obtained. The genotype frequency of infants differed by maternal parity, but maternal genotype did not. The difference between infant genotype frequency persisted after correcting for maternal genotype. Reported miscarriages were most common in first time mothers who were homozygous, corresponding with the likelihood of having a homozygous fetus. Homozygous infants born to PM-positive first-time mothers had the highest prevalence of low birth weight. In conclusion, the data suggest that FLT1 homozygous offspring are at a selective disadvantage in firsttime mothers in malaria endemic areas. Maternal malaria may exert selective pressure in utero at the FLT1 locus through pregnancy loss. This is
the first identification of a malaria resistance gene that confers protection in utero.

1055

IP-10, APOPTOTIC AND ANGIOGENIC FACTORS ASSOCIATED WITH MORTALITY OUTCOMES IN CEREBRAL MALARIA PATIENTS IN INDIA

Vidhan Jain ${ }^{1}$, Nana Wilson², Henry Armah³, Jon E. Tongren ${ }^{4}$, Pradeep K. Joel ${ }^{5}$, Mrigendra P. Singh ${ }^{5}$, Avinash C. Nagpal ${ }^{5}$, A. P. Dash ${ }^{5}$, Venkatachalam Udhayakumar ${ }^{6}$, Neeru Singh ${ }^{5}$, Jonathan K. Stiles ${ }^{2}$
${ }^{1}$ National Institute of Malaria Research (ICMR), Jabalpur, India, ${ }^{2}$ Morehouse School of Medicine, Atlanta, GA, United States, ${ }^{3}$ University of Pittsburgh, Pittsburgh, PA, United States, ${ }^{4}$ Centers for Disease Control and Prevention, Atlanta, GA, United States, ${ }^{5}$ National Institute of Malaria Research (ICMR), Jabalpur, India, ${ }^{6}$ Centers for Disease Control and Prevention, Atlanta, GA, United States

We conducted a prospective study in Jabalpur, India to assess the burden of neurological outcomes associated with cerebral malaria was conducted. The goal of this study was to understand the immunopathological mechanisms involved in cerebral malaria and to identify peripheral biomarkers (cytokines, growth factors, ligands, etc.) implicated in malaria severity that may be utilized to predict prognoses of severe CM cases in India. The central hypothesis is that altered levels of interferon γ inducible protein (CXCL10), soluble tumor necrosis factor receptor 1 and 2 (sTNFR1, sTNFR2), vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGFbb) in cerebrospinal fluid (CSF) and plasma of CM patients are predictive for neuronal injury, cognitive impairment and mortality associated with CM. We comparing different malaria groups (healthy controls [HC], mild malaria [MM], cerebral malaria survivors [CMS], and cerebral malaria non-survivors [NSCM]) and investigated the immunological profiles of various biological mediators (IL-1, IL-1 ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12 (p70), IL13, IL-15, IL-17, Eotaxin, Fas-ligand [Fas-L], soluble Fas [sFas], FGF basic protein, G-CSF, GM-CSF, IFN- γ, IP-10, MCP-1 (MCAF), MIP-1 α, MIP- 1β, PDGF bb, RANTES, TNF- α, sTNFR 1, sTNFR 2, TGF- β, and VEGF) in order to understand the role of immune factors which influence progression to severe outcomes associated with CM. Our findings suggest potential roles for IP-10, apoptotic factors and angiogenic factors in the cerebral malaria associated outcomes in Indian patients. The potential use of these results in establishing a prediction rule for CM prognosis is discussed.
(ACMCIP Abstract)

1056

SUPPRESSION OF MACROPHAGE MIGRATION INHIBITORY FACTOR (MIF) IN CHILDREN WITH SEVERE MALARIAL ANEMIA: ROLE OF MONOCYTE ACQUISITION OF HEMOZOIN

Gordon A. Awandare¹, Yamo Ouma², Collins Ouma², Tom Were ${ }^{2}$, Richard Otieno², Christopher Keller³, Gregory Davenport¹, James Hittner ${ }^{4}$, John Vulule ${ }^{5}$, Robert Ferrell ${ }^{6}$, John Michael Ong'echa², Douglas Perkins ${ }^{1}$
${ }^{1}$ University of Pittsburgh Graduate School of Public Health, Department of Infectious Diseases and Microbiology, Pittsburgh, PA, United States, ${ }^{2}$ University of Pittsburgh/KEMRI Laboratories of Parasitic and Viral Diseases, Kisumu, Kenya, ${ }^{3}$ Lake Erie College of Osteopathic Medicine, Erie, PA, United States, ${ }^{4}$ Department of Psychology, College of Charleston, Charleston, SC, United States, ${ }^{5}$ Kenya Medical Research Institute, Kisumu, Kenya, ${ }^{6}$ University of Pittsburgh Graduate School of Public Health, Department of Human Genetics, Pittsburgh, PA, United States
Severe malarial anemia (SMA), caused by Plasmodium falciparum infections, is one of the leading causes of childhood mortality in subSaharan Africa. Although the molecular determinants of SMA are largely undefined, dysregulation in host-derived inflammatory mediators
influences disease severity. Macrophage migration inhibitory factor (MIF) is an important regulator of innate inflammatory responses that has recently been shown to suppress erythropoiesis and promote pathogenesis of SMA in murine models. To examine the role of MIF in the development of childhood SMA, peripheral blood MIF production was examined in Kenyan children (aged <3 years, $n=357$) with P. falciparum malarial anemia. All children in the study were free from bacteremia and HIV-1. Since deposition of malarial pigment (hemozoin) contributes to suppression of erythropoiesis, the relationship between MIF concentrations and monocytic acquisition of Hz was also examined in vivo and in vitro. Circulating MIF concentrations declined with increasing severity of anemia and significantly correlated with peripheral blood leukocyte MIF transcripts. MIF concentrations in peripheral blood were not significantly associated with the reticulocyte production. Multivariate regression analyses, controlling for age, gender and parasitemia, further revealed that elevated levels of pigment-containing monocytes (PCM) was associated with SMA and decreased MIF production. In addition, PCM levels were a better predictor of hemoglobin and MIF concentrations than parasite density. Additional experiments in malaria-naïve individuals demonstrated that hemozoin caused both increased and decreased MIF production in cultured peripheral blood mononuclear cells (PBMC) in a donor-specific manner, independent of apoptosis. However, PBMC MIF production in children with acute malaria progressively declined with increasing anemia severity. Results presented here demonstrate that acquisition of hemozoin by monocytes is associated with suppression of peripheral blood MIF production and enhanced severity of anemia in childhood malaria.

1057

IMPACT OF ARTMISININ-BASED COMBINATION THERAPY ON MALARIA TRANSMISSION IN MALI

Bakary Fofana, Adama Dao, Cheick Omar Kone, Bakary Sidibe, Sekou Toure, Sekou Koumare, Demba Dembele, Abdoulaye Toure, Ogobara K. Doumbo, Abdoulaye A. Djimde
University of Bamako, Bamako, Mali
Most African countries have now changed their first line treatments from monotherapies to Artemisinin-based combination therapies (ACTs). ACTs are known to decrease the rate of gametocyte carriage and gametocyte density in a treated population. However, the impact of ACT treatment on gametocyte infectivity and malaria transmission is still debatable. During a randomized controlled Phase IV trial in Bougoula-Hameau, Mali, we compared the infectivity of post-AS/AQ, AR-L and AS/SP to Anopheles gambiae. Patient with uncomplicated malaria were randomised to one of the three treatment arms and followed for 28 days. Gametocyte carriage was assessed by microscopy before and after treatment. Whenever gametocytes were found, starved mosquitoes were direct-fed and kept in laboratory for 8 days. The presence of oocysts was determined and the number estimated by dissection on day 8 post feeding. Before any treatment $12 \%(n=728)$ of mosquitoes were oocyst positive at day 8 . After treatment we found that 34\% ($n=224$), 28\% ($n=288$) and 8\% ($n=602$) of mosquitoes were oocyst positive at day 8 in the AS/AQ, ARL and AS/SP arms, respectively. AS/AQ and AR-L significantly increased gametocyte infectivity ($p<0.0001$) while AS/SP significantly decreased gametocyte infectivity ($p=0.01$). This data show that the impact of ACT treatment on malaria transmission and spread of resistance may vary from one ACT to the other.

1058

BLOOD GROUP O PROTECTS AGAINST SEVERE PLASMODIUM FALCIPARUM MALARIA

J. Alexandra Rowe ${ }^{1}$, Anne-Marie Deans ${ }^{1}$, Mahamadou A. Thera², Kirsten E. Lyke ${ }^{3}$, Abdoulaye K. Kone², Dapa A. Diallo², Ahmed Raza ${ }^{1}$, Oscar Kai ${ }^{4}$, Kevin Marsh ${ }^{4}$, Christopher V. Plowe ${ }^{3}$, Joann M. Moulds ${ }^{5}$
${ }^{1}$ University of Edinburgh, Edinburgh, United Kingdom, ${ }^{2}$ University of

Bamako Faculty of Medicine, Bamako, Mali, ${ }^{3}$ University of Maryland School of Medicine, Baltimore, MD, United States, ${ }^{4}$ KEMRI/Wellcome Laboratories, Kilifi, Kenya, ${ }^{5}$ Lifeshare Blood Center, Shreveport, LA, United States
Malaria has been a major selective force on the human population, and several erythrocyte polymorphisms have evolved that confer resistance to severe malaria. Plasmodium falciparum rosetting, a parasite virulence phenotype associated with severe malaria, is reduced in blood group O erythrocytes compared to groups A, B and $A B$, but the contribution of the ABO blood group system to protection against severe malaria has received little attention. We hypothesised that blood group O may confer resistance to severe malaria via the mechanism of reduced rosetting. In a case-control study of 670 Malian children, we found that blood group O was present in only 22% of severe malaria cases compared to $40-45 \%$ of healthy controls and uncomplicated malaria cases. Blood group O was associated with a 66% reduction in the odds of developing severe malaria compared to the non-O blood groups (odds ratio (OR) $0.34,95 \%$ confidence interval (CI) $0.21-0.54, \mathrm{P}<0.0005$). In the same sample set, P. falciparum rosetting was reduced in parasite isolates from blood group O children compared to the non-O blood groups ($P=0.003$, Kruskal Wallis test). A second study of 144 Kenyan children also showed that group O was associated with reduced rosetting ($\mathrm{P}=0.0001$) and protection against severe malaria (OR $0.37 ; 95 \% \mathrm{Cl} 0.17-0.80, \mathrm{P}<0.05$). This work highlights the importance of P. falciparum rosetting as a pathogenic factor in severe malaria, and suggests that the selective pressure imposed by malaria may contribute to the variable global distribution of ABO blood group types.

1059

$\alpha+-$ THALASSAEMIA PROVIDES A HAEMATOLOGICAL ADVANTAGE AGAINST MALARIA

Freya J. Fowkes¹, Stephen J. Allen², Angela Allen², Michael P. Alpers ${ }^{3}$, David J. Weatherall ${ }^{2}$, Karen P. Day ${ }^{1}$
${ }^{1}$ New York University School of Medicine, Department of Medical Parasitology, New York, NY, United States, ${ }^{2}$ The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom, ${ }^{3}$ Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea

The heritable haemoglobinopathy $\alpha+$-thalassaemia is caused by the reduced synthesis of α-globin chains that constitute normal adult haemoglobin. Individuals homozygous for $\alpha+$-thalassaemia have an increased number of microcytic erythrocytes that contain less haemoglobin than those of normal genotype. $\alpha+$-Thalassaemia homozygosity confers considerable protection against severe malaria, as well as severe nonmalaria. We investigated whether a haematological advantage may explain these observations. A number of haematological parameters as well as acute phase protein levels were determined in a cohort of Papua New Guinean children who had previously demonstrated the protective effect of $\alpha+$-thalassaemia. Here we show that the erythrocyte profile associated with $\alpha+$-thalassaemia would be a haematological benefit during the significant erythrocyte loss that occurs in acute malaria. This may contribute substantially to the protection of $\alpha+$-thalassaemia homozygous children against severe malaria anaemia.

1060

MODELING THE DISTRIBUTION OF THE HOST-SEEKING NYMPHAL IXODES SCAPULARIS TICKS IN THE USA USING CLIMATE AND LANDSCAPE PREDICTORS

Maria Diuk-Wasser ${ }^{1}$, Gwenael Vourc' ${ }^{2}$ ², Anne Gatewood ${ }^{1}$, Paul Cislo ${ }^{1}$, Roland Geerken¹, Sarah Yaremych-Hamer³, Michelle Rowland ${ }^{4}$, Roberto Cortinas ${ }^{5}$, Jean Tsao ${ }^{3}$, Uriel Kitron ${ }^{4}$, Joseph Piesman ${ }^{6}$, Durland Fish ${ }^{1}$
${ }^{1}$ Yale University, New Haven, CT, United States, ${ }^{2}$ Institut National de la Recherche Agronomique (INRA), St. Genes Champanelle, France, ${ }^{3}$ Michigan State University, East Lansing, MI, United States, ${ }^{4}$ University of

Illinois, Urbana-Champaign, IL, United States, ${ }^{5}$ University of Minnesota, Saint Paul, MN, United States, ${ }^{6}$ Centers for Disease Control and Prevention, Fort Collins, CO, United States

Human Lyme disease risk in the eastern United States is dependent on the abundance of nymphal lxodes scapularis ticks infected with Borrelia burgdorferi, since nymphs represent the only important stage for transmission to humans. While many studies have estimated local and regional I. scapularis density, there has never been a large-scale study using a common, standardized methodology. To develop a nationwide spatial Lyme disease risk model, we designed a four-year survey of I. scapularis covering its known geographic range. Here we report results for tick density, for the first three years. The density of host-seeking l. scapularis nymphs was measured by drag sampling of closed-canopy deciduous forest habitats in 304 sites spaced among 95 two-degree quadrants covering the USA, east of the 100th meridian. Thirty of those sites were resampled in subsequent years. Within each site, one thousand meters were sampled along five transects, 3-6 times during the summers of 2004-2006. We used a logistic regression model to predict the probability of finding a nymph in a site based on climate, landscape and altitude. Climate variables included monthly maximum and minimum temperature, precipitation and vapor pressure deficit. We also derived the magnitude and phase of the annual temperature cycle, and the magnitude of vapor pressure deficit, using Fourier transformation. Landscape variables included the proportion of forest in an 8 km area surrounding the sampling site. The variables in the best fitting model were altitude and the magnitude and phase (quadratic) of the annual minimum temperature cycle. Model sensitivity and specificity were 71.1\% and 72.5%, respectively. The model delineates two areas with high probability of host-seeking nymphal I. scapularis presence in the Northeast and Upper Midwest and correctly predicts the absence of nymphs in most of the Southern sites. Negative sites that where predicted positive could represent areas of future I. scapularis expansion.

1061

IMMUNITY TO SALIVA AT THE TICK-HOST INTERFACE: IDENTIFICATION OF IXODES SCAPULARIS SALIVARY PROTEINS ELICITING A CELLULAR IMMUNE RESPONSE

Jennifer M. Anderson¹, Nathan J. Miller², Thomas N. Mather², Jerrold M. Ward', Jesus G. Valenzuela ${ }^{1}$
${ }^{1}$ National Institutes of Health, Rockville, MD, United States, ${ }^{2}$ University of Rhode Island, Kingston, RI, United States
Tick saliva contains pharmacologically active ingredients that enable and enhance blood feeding. In susceptible hosts, such as guinea pigs, exposure to saliva confers resistance to ticks. Tick resistance may have a protective effect against transmission of tick borne diseases, such as Lyme disease, yet the immunological mechanisms involved in tick resistance have not been thoroughly elucidated. Ixodes scapularis saliva consists of at least 25 different families of proteins containing over 470 individual proteins. Using a reverse antigen screening approach, whereby guinea pigs were sensitized to I. scapularis and then challenged intradermally with 72 individual salivary specific DNA plasmids, we identified 9 salivary gland proteins that induced a statically significant cellular recall skin response based on redness, induration and histological analysis. This reverse antigen screening approach, which identifies molecules that produce a delayed skin response, a surrogate of cellular immunity, was validated using the corresponding recombinant proteins produced in mammalian cells. As observed during normal tick feeding, basophils and eosinophils were the major cellular infiltrate at the inoculation site. Six of the nine skin response inducing DNA plasmids belong to a protein family characterized by cysteine framework and a lysine rich basic tail and shares homology with a known tick salivary anti-coagulant. In addition to cellular recruitment, this group of proteins elicits an antibody response in tick sensitized guinea pigs as measured by western blot. When vaccinated with a combination of the six basic tail DNA plasmids, guinea pigs showed higher levels of tick resistance than control animals. With this approach we have identified tick salivary proteins that produce a strong cellular immune response in the
skin of animals. Furthermore, the immune response generated by these tick salivary proteins appears to play an important role in resistance to tick feeding.

1062

METHODOLOGICAL CONSIDERATIONS IN DESCRIBING THE POPULATION DYNAMICS OF DEER TICKS ON WHITE-FOOTED MICE

Elissa V. Klinger¹, Ivo M. Foppa², Heidi K. Goethert¹, Sam R. Telford ${ }^{1}$
${ }^{1}$ Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States, ${ }^{2}$ Arnold School of Public Health, Columbia, SC, United States

Studying the population dynamics of deer ticks (Ixodes dammini) is facilitated by counting subadults infesting white-footed mice (Peromyscus leucopus), which serve as unbiased sampling devices. Typical summary statistics for infestation include the mean number of larvae or nymphs infesting the average mouse. Because macroparasites are usually overdispersed, such a parametric summary statistic as the mean and standard deviation is poorly representative. We sought to develop alternative methods for representing the population dynamics of deer ticks on white-footed mice in space and time. Mice were trapped over 8 transmission seasons (1994-2001) on two geographically separated 0.4 ha grids on Martha's Vineyard, Massachusetts, where Lyme disease incidence is among the greatest reported for the U.S. Demographic information and counts of identified tick larvae and nymphs were recorded for each individual animal ($\mathrm{N}=1133$). More than half of all mice were uninfested during the typical nymphal or larval activity months. The mode for nymphs infesting each mouse was 2 or fewer but 2.5% of mice served as host for more than 10 , that is, a small number of mice may function similar to "super-spreaders" in that they are heavily parasitized while the majority of mice carry a low to moderate tick burden. Total expected productivity of a trapping grid during a transmission season, estimated by the area under the curve of a scatterplot of individual infestations by epidemiological week was more predictive of the subsequent year's infestations than was measuring the association between mean infestations of larvae of one year and that of nymphs during the next. Alternative methods that describe the intensity as well as heterogeneity of tick parasitism may provide us with more realistic parameters to use for predictive models of Lyme disease transmission.

1063

IDENTIFICATION OF A NATURAL FOCUS OF TULAREMIA TRANSMISSION USING GIS MAPPING OF INFECTED DERMACENTOR VARIABILIS

Heidi Goethert, Sam Telford
Tufts University School of Veterinary Medicine, N. Grafton, MA, United States
During the last 7 years, Martha's Vineyard, Massachusetts has experienced a prolonged epizootic of tularemia due to Francisella tularensis tularensis (Ftt). Although the mode of perpetuation remains undescribed, our previous work on the island has implicated dog ticks, Dermacentor variabilis (Dv), as a critical element. Using variable number tandem repeat (VNTR) analysis, we have shown that Ftt on MV is highly diverse, indicative of long-standing transmission on the island. It may be that such diversity is maintained by enzootic transmission of Ftt in small isolated natural foci of transmission. To examine this hypothesis, we sought to map the location of ticks testing positive for Ftt to determine whether such ticks cluster together in putative foci. Using a handheld GPS unit, we mapped 86 waypoints along 3 transects approximately 3400 m total in length in a field site on MV that has sustained a high prevalence of infection since 2002. From 2004-2006 questing ticks were collected at each waypoint by flagging. Ticks were tested for evidence of Ftt in pools of 6 by PCR targeting the FopA gene. Ticks from positive pools were then retested
individually. VNTR analysis was done on individual ticks using 4 loci. We identified an area along the transects, approximately 180 m long, where PCR positive ticks appeared to cluster. Of 5106 ticks collected during this study; 27% (1383) of these were collected from this section. However, a disproportionately large percentage of ticks testing positive for Ftt, 54\% (110 of 204 total), derived from this small area. VNTR analysis showed that most, 83.8% (171), of the positive ticks harbored one of 2 dominant haplotypes. These two types were distributed throughout our field site. However, of the 33 uncommon haplotypes, 81.8% clustered together in this one section. We conclude that this 180m transect represents a natural focus and is likely to be a source of genetic diversity for Ftt.

1064

EHRLICHIOSES IN CAMEROON

Lucy M. Ndip

University of Buea, Buea, Cameroon
Ehrlichia are tick-transmitted obligately intracellular gram negative bacteria of medical and veterinary importance. Two species, Ehrlichia chaffeensis and E. ewingii cause human monocytotropic ehrlichiosis (HME) and ehrlichiosis ewingii, respectively, two emerging and lifethreatening human zoonoses. They are transmitted primarily by the Lone Star tick, Amblyomma americanum, in the United States. E. canis is the globally distributed cause of canine monocytic ehrlichiosis (CME) and is transmitted by the brown dog tick, Rhipicephalus sanguineus. E. canis has also been isolated from a human while E. chaffeensis and E. ewingii, also cause serious disease in canines. E. ruminantium causes cowdriosis, an economically important disease of cattle in Africa. Reports describing the prevalence of E. ruminantium in Cameroon are available; however, the presence of other ehrlichial agents is only being investigated. Recent molecular and serological evidence suggest that E. chaffeensis is also found in areas where A. americanum is not indigenous suggesting that ehrlichial agents could be maintained and transmitted by different reservoirs and tick vectors respectively. A study was designed to determine the prevalence of Ehrlichia spp. (E. canis, E. chaffeensis and E. ewingii) in human, dogs and tick populations in Cameroon. Results indicate that in addition to E. canis and E. ruminantium, E. chaffeensis and E. ewingii, agents of important emerging zoonosis circulate in Cameroon. R. sanguineus was identified as a probable vector of E. canis, E. chaffeensis or E. ewingii with a possibility of simultaneous infections This study also identifies E. chaffeensis as a prevalent but unrecognized cause of undifferentiated febrile illness in Cameroonian patients. These findings offer conclusive evidence that multiple Ehrlichia species are present in Cameroon and identify R. sanguineus ticks as a primary vector of Ehrlichia species with the potential to transmit these previously unrecognized zoonotic agents to humans Cameroon.

1065

RISK OF SPOTTED FEVER GROUP RICKETTSIA INFECTION TO U.S. MILITARY PERSONNEL

Ju Jiang ${ }^{1}$, Paul C. Graf¹, Ellen Y. Stromdahl², Allen L. Richards ${ }^{1}$
${ }^{1}$ Naval Medical Research Center, Silver Spring, MD, United States, ${ }^{2}$ US Army Center for Health Promotion and Preventive Medicine, Edgewood Area of Aberdeen Proving Ground, MD, United States
This report describes an investigation to characterize the risk of spotted fever group rickettsia (SFGR) infection to U.S. military personnel by evaluating: 1) 10,000 sera from military members for the presence of antibodies to SFGR by a Rickettsia rickettsii antigen adsorbed ELISA and 2) 1,399 ticks removed from individuals presenting to medical clinics on military bases throughout the country for the presence of rickettsiae by genus- and species-specific real-time PCR assays. It was ascertained that $6.0 \%(597 / 10,000)$ of military personnel sera tested were positive for SFGR-specific antibodies. This SFGR seroprevalence is similar to that reported from a previous study performed on pre- and post-deployment sera collected from 865 military personnel during Operation Desert Storm
(9.8\%) and on sera collected from U.S. civilian populations (4-10\%). In the second part of the study it was determined that of 808 Dermacentor variabilis and 220 Amblyomma americanum ticks evaluated none were identified as having Rickettsia rickettsii the causative agent of Rocky Mountain spotted fever (RMSF). However, 47 of the 808 (5.8\%) D. variabilis were infected with rickettsiae and 17 (2.1%) of these were R. montanensis, and one (0.1%) was R. felis. The other 29 (3.6\%) rickettsiae were not identified further to the species level. Of 44 pools containing 5 A. americanum individuals/pool 35 pools (87.5%) were positive for R. amblyommii and no other SFGR. Moreover, 246 (66\%) of 371 additional A. americanum ticks tested were positive for R. amblyommii. The high prevalence of antibody to SFGR among U.S. military personnel and the high prevalence of SFGR infected ticks recovered from humans detected in this study suggests that U.S. military personnel are at risk of infection with SFGR but the risk of infection solely due to R. rickettsii appears to be low. This conclusion is especially important in light of the recent reports of the previously thought to be non-pathogen R. parkeri causing SFGR disease in military personnel.

1066

HUMAN ANTIBODY-REACTIVE EPITOPES ON THE CONSERVED 47 KDA ANTIGEN OF ORIENTIA TSUTSUGAMUSHI AND THEIR SIMILARITY TO EPITOPES ON HUMAN SERINE PROTEASE

Hua-Wei Chen ${ }^{1}$, Hui Wang ${ }^{1}$, Gregory A. Dasch², Wei-Mei Ching ${ }^{1}$ ${ }^{1}$ Naval Medical Research Center, Silver Spring, MD, United States, ${ }^{2}$ Centers for Disease Control and Prevention, Atlanta, GA, United States
Scrub typhus is an acute, febrile disease caused by infection with Orientia tsutsugamushi. One of its immunodominant antigens is a conserved 47 kDa protein, a homologue of heat shock protein HtrA. To identify the human antibody-reactive epitopes on this antigen, a series of overlapping decapeptides encompassing the whole Karp strain protein were synthesized by solid phase pin technology. A modified ELISA was used to measure the immunoreactivity of sera from scrub typhus patients to each of the peptides. All of the five patient sera tested reacted with peptides located near the N-terminus and from amino acid 377 to the C-terminus. Two peptide clusters and three peptide clusters were identified near the N -terminus and C -terminus, respectively. The reactivity of each serum toward the central part of the protein was highly patient specific. This central part (aa 85-235) exhibited a high degree of sequence homology with human serine protease11. Collectively, 10 peptide epitopes were identified in this region. Previously we constructed a DNA vaccine plasmid expressing the conserved 47 kDa antigen of Karp strain (pKarp47) which provided $70-100 \%$ homologous protection, 80% protection against three antigenically unrelated strains, only partial protection against three other strains and no protection against another ten strains in a mouse challenge model. Although immunized mouse sera did not react with the recombinant human protease11, the identification of peptide epitopes with sequence homology to human protein has raised concern about possible autoimmune responses if this antigen were used as a vaccine candidate. Elimination of the central part of the 47 KD antigen to avoid introducing potential cross-reactive epitopes may enhance the safety of the vaccine candidate.

1067

ARTEMISININ DERIVATIVES ACCUMULATE WITHIN DIGESTIVE VACUOLE-ASSOCIATED NEUTRAL LIPID BODIES IN PLASMODIUM FALCIPARUM

Carmony L. Hartwig ${ }^{1}$, Andrew S. Rosenthal², John D' Angelo², Gary. H. Posner², Roland A. Cooper ${ }^{1}$
${ }^{1}$ Old Dominion University, Norfolk, VA, United States; ${ }^{2}$ Department of Chemistry and Malaria Research Institute, Johns Hopkins University, Baltimore, MD, United States

Artemisinin (ART) is one of the most valuable antimalarials currently available. The activity of ART against Plasmodium is due to cleavage of the endoperoxide bridge by ferrous heme iron predominantly located in the parasite digestive vacuole (DV). This reaction initiates the formation of cytotoxic ART intermediates that may alkylate heme and proteins. To provide further insight into the targets of ART, we used microscopic imaging to study the cellular distribution of novel fluorescent ART derivatives in living malaria parasites. Exposure of P. falciparum-infected erythrocytes to the trioxane derivative (12C) resulted in rapid accumulation of fluorescence within neutral lipid bodies (NLBs) associated with the DV exterior. Pre-treatment of cultures with ART demonstrated a 75\% decrease in total accumulation of 12C signal within NLBs. In contrast, pre-treatment with deoxydihydroartemisinin (DeoxyART), an inactive derivative lacking the endoperoxide, had little effect on 12C localization. Additionally, application of a fluorescent deoxy-dimer derivative (DeoxyASR) failed to produce NLB-associated fluorescence, confirming necessity of the endoperoxide pharmocophore for the observed drug accumulation. TLC analysis of parasite lipid extracts following exposure to ART and ART derivatives supported peroxidation, as opposed to alkylation, of lipids. This was confirmed in parasites through microscopic evaluation using an oxidation sensitive lipid probe. In the parasite DV, NLs associate with heme and promote hemozoin formation. We propose that ART activated by heme iron within this NL environment may increase heme-catalyzed peroxidation of these vital cellular components. This process could be essential to the antimalarial capability of ART and its derivatives.

1068

A LARGE RETROPOSON FAMILY IS INVOLVED IN THE REGULATION OF GENE EXPRESSION IN THE PROTOZOAN

Michaela Müller, Fréderic Bringaud, Annie Rochette, Martin Smith, Elodie Ghedin \& Barbara Papadopoulou
Infectious Diseases Research Center, CHUL Research Center, Department of Medical Biology, Laval University, Quebec, Canada

Leishmania are unicellular parasites that exist in two developmental stages: free-living promastigotes in the alimentary tract of a sandfly vector and intracellular amastigotes residing in phagolysosomes of mammalian macrophages. These developmental stages display distinct morphologic and metabolic characteristics, consistent with a highly regulated level of differential gene expression, which is central to the parasite's intracellular survival. In Leishmania stage-regulated gene expression is often mediated by sequences within 3^{\prime}-untranslated regions (3^{\prime} UTRs), since these parasites have lost the ability to regulate transcription initiation. Using in-silico screening and bioinformatic analyses, we have recently identified two new families of widespread extinct retroposons (more than 2000 in the Leishmania genome), LmSIDER1 (Short Interspersed DEgenerated Retroelements) and LmSIDER2, that are predominantly located within 3'untranslated regions of Leishmania mRNAs. We investigated the regulatory potential of these elements, using microarray analyses, reporter gene assays and polysome profiling studies and found that members of the LmSIDER1 family are associated with stage-specific translational regulation by enhancing binding of SIDER1-containing mRNAs to highly translating polyribosomes. Interestingly, members of the LmSIDER2 retroposons are also involved in the regulation of gene expression, however, they act on the level of mRNA stability and promote destabilization of SIDER2-bearing mRNAs. Microarray analysis combined to actinomycin D assays indicate that several SIDER2-containing Leishmania transcripts are low abundant and short lived, suggesting a common mechanism to regulate multiple genes in a coordinated manner. The considerable expansion of SIDERs within 3'UTRs and their role in regulating gene expression support that Leishmania have recycled and probably expanded these elements to fulfill critical regulatory functions. We are currently investigating the mode of action of these widespread retroposons and the underlying molecular mechanisms that govern developmental gene regulation in this important human pathogen.

1069

THE TOXOPLASMA GONDII ORTHOLOGUE OF TIC20 (TGTIC20) IS ESSENTIAL FOR PROTEIN IMPORT, APICOPLAST BIOGENESIS AND PARASITE SURVIVAL

Giel van Dooren ${ }^{1}$, Cveta Tomova², Swati Agrawal ${ }^{1}$, Bruno Humbel ${ }^{2}$ and Boris Striepen ${ }^{1}$
${ }^{1}$ University of Georgia, Athens, GA, United States, ${ }^{2}$ Electron Microscopy and Structural Analysis, Department of Biology, Utrecht University, Utrecht, The Netherlands

Apicomplexan parasites contain a plastid organelle called the apicoplast. The apicoplast is a validated drug target that likely functions in several essential metabolic pathways. The majority of apicoplast proteins are nuclear-encoded, and must be directed to the apicoplast following translation. Apicoplast-targeted proteins typically have an N -terminal signal peptide that likely directs co-translational import into the ER. A second N-terminal domain known as a transit peptide then directs targeting of apicoplast proteins from the ER into the apicoplast stroma. Although the features of apicoplast transit peptides have been studied in some detail, little is known about the molecular mechanisms of protein targeting to the apicoplast, in particular how proteins cross the four delineating membranes of the organelle. We have mined the T. gondii genome for proteins known to be involved in protein import into plant plastids. Here we describe a T. gondii orthologue of the plant Tic20 protein, which forms part of the translocon of the inner chloroplast membrane (Tic) complex in plants. We demonstrate that TgTic20 is a membrane-spanning protein of approximately 20 kDa that localises to the inner apicoplast membrane. We have generated an inducible TgTic20 knock-out strain. We show that TgTic20 is essential for parasite growth, and that disruption of this gene leads to defects in protein import into this organelle, and subsequent defects in apicoplast biogenesis. Our results suggest that TgTic20 likely functions in protein import into the apicoplast. In the absence of apicoplast protein import, most apicoplast functions will be disabled, and we are now in the process of further characterising this apicoplast protein import mutant to gain an understanding into the functions of this organelle.

1070

ELONGATION FACTOR 1A MEDIATES THE SPECIFICITY OF MITOCHONDRIAL TRNA IMPORT IN T. BRUCEI

Eric Aeby, Nabile Bouzaidi-Tiali, Fabien Charrière, Mascha Pusnik, André Schneider

Department of Biology/Cell and Developmental Biology, University of Fribourg, Fribourg, Switzerland
Mitochondrial tRNA import is widespread in eukaryotes. Yet, the mechanism that determines its specificity is unknown. The T-stem nucleotide pair 51:63 is the main localization determinant in tRNAs of Trypanosoma brucei. In the cytosol-specific initiator tRNA ${ }^{\text {met }}$ this nucleotide pair is identical to the main anti-determinant that prevents interaction with cytosolic elongation factor (eEF1a). Here we show that ablation of cytosolic eEF1a, but not of initiation factor 2, inhibits mitochondrial import of newly synthesized tRNAs well before translation or growth is affected. tRNA ${ }^{\text {sec }}$ is the only other cytosol-specific tRNA in T. brucei. It has its own elongation factor and does not bind eEF1a. However, a mutant of the tRNA ${ }^{\text {sec }}$ expected to bind to eEF1a is imported into mitochondria. This import requires eEF1a and aminoacylation of the tRNA. Thus, for a tRNA to be imported into the mitochondrion of T. brucei it needs to bind eEF1a and it is this interaction that mediates the import specificity.

A ROLE FOR IRF-7 IN REGULATING THE INTRACELLULAR FATE OF LEISHMANIA DONOVANI

Rebecca Phillips ${ }^{1}$, M. Svensson ${ }^{2}$, P. Kaye ${ }^{1}$
${ }^{1}$ Immunology and Infection Unit, Department of Biology, University of York and the Hull York Medical School, York, United Kingdom, ${ }^{2}$ Center for Infectious Medicine, Department of Medicine, F59 Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden

Leishmania donovani infects a broad range of host cells, including monocytes, dendritic cells and, a variety of tissue- and microenvironmentspecific macrophages and stromal cells. In spite of evident host cell heterogeneity, little is known about the outcome of infection of specific groups or the underlying mechanisms involved. To begin to address this question, we performed comparative genome-wide expression analysis and identified differential activation of the type I IFN cascade in cell lines that differed in their capacity to support L. donovani infection. The transcription factor IRF-7 is critically involved in the regulation of Type 1 interferon gene expression and triggering of IFN α / β production following challenge with many pathogens. As such, IRF-7 acts as a key regulator of innate immunity and subsequent adaptive responses. To test the hypothesis that regulation of IRF-7 may underlie the cell-specific responses to L. donovani, and confirm our initial analysis, quantitative RT-PCR analysis was performed. RAW264 macrophages, which maintain intracellular amastigotes over an extended period of time, accumulated minimal Irf-7 mRNA over a 12-48h period post infection (p.i.). In contrast, amastigote burden was significantly reduced in the stromal macrophage cell line (14M1.4) and this cell mounted a robust and infection dosedependent Irf-7 response, detected from 12 h p.i., Comparative analysis of intracellular amastigote division by CFSE dilution indicated that the response of 14 M 1.4 cells was likely to be leishmanicidal rather than leishmanistatic. Confocal microscopy revealed that IRF-7 protein is localised in the cytoplasm of uninfected 14M1.4 cells and co-localises with the adaptor protein MyD88 in punctuate vesicular organelles. By 48 h p.i., MyD88 and IRF-7 dissociate, as IRF-7 is translocated to the nucleus and also appears to be recruited to amastigote-containing phagosomes. In addition to identifying a potential basis for host cell permissiveness to L. donovani infection, these findings suggest the possibility of MyD88independent, IRF-7- dependent signal transduction from the Leishmania phagosome. Further studies to test this possibility are underway.

1072

PRESENCE OF AN IL-7R $\alpha^{\text {HI }}$ MEMORY CD8+ T CELL POPULATION DURING PERSISTENT TRYPANOSOMA CRUZI INFECTION

Lisa M. Bixby, Juan M. Bustamante, Matthew H. Collins, Rick L. Tarleton
University of Georgia, Athens, GA, United States
Trypanosoma cruzi establishes a persistent infection in mice despite a potent and highly focused T. cruzi-specific CD8+ T cell response. Chronic intracellular infections are known to significantly impact the phenotype and function of host memory CD8+ T cell responses and these changes are thus of interest in T. cruzi infection. The IL-7R α chain is one of the early memory markers modulated by persistent antigen. CD8+ T cells responding to persistent pathogens generally fail to express IL-7R α while those targeting cleared pathogens upregulate IL-7R α. We examined IL7R α expression on parasite-specific CD8+ T cells during chronic T. cruzi infection in mice using MHC class I tetramers to identify CD8+ T cells specific for immunodominant and subdominant parasite epitopes. While the majority of splenic T. cruzi-specific CD8+ T cells fail to express IL-7R α, between 15 and 30% expressed this receptor during the chronic phase of infection. These IL-7R $\alpha^{\text {hi }}$ antigen-specific CD8+ T cells were also capable of producing IFN- α following peptide restimulation. Additionally, purified IL-

7R $\alpha^{\text {hi }}$ CD8+ T cells from chronically infected mice were better maintained following transfer into naïve mice than their IL-7R α° counterparts, suggesting that a stable central memory CD8+ T cell population capable of antigen-independent survival may be present in an environment where antigen persists. This population of central memory T cells likely comprise a subset of parasite-specific cells which have not recently encountered antigen and thus can preserve long-term T cell memory in situations where antigen is cleared - such as after successful drug treatment. Indeed, we have shown that a T. cruzi-specific CD8+ T central memory population emerges in mice cured with the drug benznidazole. These results suggest that long-term T cell memory can be maintained even in the face of antigen persistence during T. cruzi infection. Retention of such a memory population could have implications for long-term protection in individuals successfully treated with benznidazole.

1073

CHARACTERIZATION OF THE APIAP2 DNA-BINDING PROTEINS IN PLASMODIUM FALCIPARUM

Erandi K. De Silva¹, Jasdave S. Chahal¹, Ilsa León¹, Andrew Gehrke², Martha L. Bulyk², Manuel Llinás¹
${ }^{1}$ Department of Molecular Biology \& Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States, ${ }^{2}$ Division of Genetics, Department of Medicine, Department of Pathology and Harvard/ MIT Division of Health Sciences \& Technology; Brigham \& Women's Hospital and Harvard Medical School, Boston, MA, United States

The mechanisms underlying transcriptional regulation in apicomplexan parasites remain poorly understood. In addition, genome sequence data has revealed a dearth of specific transcription factors in Apicomplexa. Conserved regulatory sequence motifs that are sufficient for gene expression in Plasmodium have been poorly characterized and their cognate DNA-binding proteins remain unknown. We have initiated the characterization of the role of a predicted family of putative transcriptional regulators - the Apicomplexan AP2 proteins (ApiAP2) in Plasmodium development. ApiAP2 proteins contain AP2 domains homologous to the second largest family of transcriptional regulators in plants. Plant AP2 proteins play key roles in development and response to environmental stress. ApiAP2 proteins in P. falciparum show stage-specific gene expression patterns spanning the 48-hour intra-erythrocytic development cycle (IDC). We hypothesize that the ApiAP2 proteins may be the master regulators responsible for the coordination of gene expression throughout the IDC. Using a high-density protein-binding DNA microarray, we have assayed the DNA binding properties of AP2 domains from several ApiAP2 proteins. Our results demonstrate that isolated AP2 domains from ApiAP2 proteins in Plasmodium bind unique and highly specific DNA sequences found only in Apicomplexa. Furthermore, we have computationally examined the 5' upstream region of all plasmodium genes, and find that sequence motifs bound by our ApiAP2 proteins are significantly enriched in genes sharing similar stage-specific gene expression. These genes likely represent potential downstream targets of our ApiAP2 proteins. This study provides the first example of Plasmodium proteins that specifically bind DNA and lays the foundation for exploring the role of ApiAP2 proteins during development. AP2 proteins may prove to be ideal antimalarial targets, as they have no counterparts in mammalian systems.

1074

POLYADENYLATION STABILIZES TRANSLATIONALLYCOMPETENT MRNAS IN TRYPANOSOME MITOCHONDRIA

Ronald D. Etheridge, Inna Aphasizheva and Ruslan Aphasizhev Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, United States
Polyadenylation is a ubiquitous mechanism regulating mRNA stability, although the functions of the poly(A) tail are phylogenetically divergent and may vary between cellular organelles. In human mitochondria poly(A) tails stabilize mRNAs, whereas in plant mitochondria and chloroplasts
polyadenylation serves as a degradation signal. We have identified the trypanosomal mitochondrial poly(A) polymerase, termed kPAP1, as a protein homologous to terminal uridylyl transferases (TUTases). kPAP1 is a developmentally regulated gene that is essential for mitochondrial function. The inhibition of kPAP1 expression results in loss of both the short (~20 nts) and long (~120-250 nts) poly(A) tails, followed by the rapid decay of non-edited and edited mRNAs. The stability of pre-edited transcripts, however, is unaffected by the lack of poly (A) tails. The uridine insertion/deletion editing directed by a single guide RNA is sufficient to switch the function of the pre-existing poly(A) tail from a neutral to a stabilizing signal. In the mitochondrial extract, KPAP1 exists as part of high-molecular weight complexes that interact with the 20S editosome and RNA Editing TUTase 1 (RET1). The recombinant kPAP1 and the affinity-purified kPAP1 complex are capable of adding only short A-tails to synthetic RNA substrates, but not the long poly(A) tails reported in vivo. We further demonstrate direct involvement of RET1 into mRNA processing via contribution to the synthesis of a unique 3^{\prime} end structure. In our model, kPAP1 synthesizes a short poly (A) tail thereby creating a platform for the recruitment of RET1 and possibly other factors. A long (A/U) heteropolymer of ~ 100 nucleotides in length is then added to the short A-tail of fully edited mRNAs by the concerted action of RET1 and KPAP1.

1075

A CONSERVED BASIC GROOVE ON ALDOLASE MEDIATES MIC2 CYTOPLASMIC TAIL AND F-ACTIN BINDING

G. Lucas Starnes, Miguel St-Jean, Jurgen Sygusch \& L. David Sibley

Washington University, St. Louis, MO, United States
Apicomplexan parasites rely on actin-based motility to drive host cell invasion. To power motility, actin filaments must be coupled to surface adhesions in the thrombospondin-related anonymous protein (TRAP) family. This crucial linkage is provided by the glycolytic enzyme fructose-1,6-bisphosphate aldolase. Prior investigations have demonstrated aldolase forms a critical bridge between actin filaments and the short, acidic, cytoplasmic tail of the adhesin. By virtue of its key role in glycolysis, aldolase is a highly conserved enzyme at the levels of sequence, structure, and function. Based on published crystal structures, we developed a molecular homology model of Toxoplasma gondii aldolase and identified a large, basic, surface-exposed groove along each monomer of the tetrameric enzyme. Guided by this model, we selectively mutated several charged residues to alanine. The basic residues identified in the current study are conserved in the Plasmodium falciparum aldolase and, based on co-crystallization studies, have been implicated to participate in the association with the C-terminus of TRAP. Homology modeling supports a similar interaction between aldolase and the MIC2 C-terminus. We tested this model using biochemical analysis, investigating three critical functions of aldolase: substrate catalysis, binding to the C-terminal tail of MIC2 and interaction with F-actin. Our studies reveal the aldolase binding surface for the MIC2 tail overlaps with the enzyme active site, yet adhesin binding and substrate catalysis can be separated as two distinct sub-domains on the surface of aldolase. In contrast, the interactions between aldolase and F-actin and the MIC2 tail appear to be completely overlapping. These findings identify specific mutations that will allow dissection of the role of aldolase in bridging to TRAP-adhesins in vivo.

1076

IDENTIFICATION OF A GPI-ANCHORED THEILERIA SURFACE PROTEIN POTENTIALLY INVOLVED IN CYTOKINESIS

Gongda Xue ${ }^{1}$, Martina Peyer ${ }^{1}$, Conrad von Schubert ${ }^{1}$, Pascal Hermann ${ }^{1}$, Peter Bütikofer², Adrian Hehl ${ }^{3}$, Dirk Dobbelaere ${ }^{1}$
${ }^{1}$ Vetsuisse Faculty, Division of Molecular Pathology, University of Bern, Switzerland, ${ }^{2}$ Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland, ³/nstitute of Parasitology, University of Zurich, Switzerland

The apicomplexan protozoal parasites Theileria parva and Theileria annulata cause diseases in cattle known as East Coast Fever and tropical Theileriosis. Sporozoites invade leukocytes where they develop into a syncytial schizont, which resides freely in the cytosol and activates antiapoptotic pathways and continuous host cell proliferation. Parasite and host cell cytokinesis are synchronized and the parasite appears to use the mitotic spindle apparatus to ensure its distribution over the two daughter cells. Recently, we have identified a parasite gene encoding a 34 kDa GPIanchored protein (gp34) that may be involved in this process. Antibodies raised against gp34 label the schizont surface. When expressed in HeLa cells, gp34 localizes to the plasma membrane. Ectopical expression of soluble forms of gp34, revealed cell cycle-dependent co-localization with M phase structures (spindle poles, spindle microtubules and midbody) and also provoke host cell multinucleation in Theileria-infected macrophages. Induction of multipolar spindles in Theileria-transformed cells confirmed a spindle pole association of the parasite. We used GST-gp34 fusion proteins in pull-down experiments to screen for proteins known to be associated with M phase structures. Among the interacting proteins are γ-tubulin, PIk1 as well as important components of the chromosomal passenger complex and the central spindlin complex. We could demonstrate that gp34 functions as an in vitro substrate for PIk1 and GST-gp34 was found to bind in vitro translated forms of Plk1. These findings are strengthened by the observation that endogenous and ectopically expressed Plk1 localize to the parasite surface in a cell-cycle dependent manner. Taken together, these findings point towards a potential role for Theileria gp34 in the host-parasite interactions during host cell mitosis and cytokinesis.

Author Index

A-nuegoonpipat, Atchareeya 107
Abanobi, Okwuoma C. 100
Abbassy, Magda M. 61
Abdelhamid, Mohamed 731
Abdukhalilova, Gulnara K. 744
Abdul Rahman, Sohayati 954
Abdulla, Maha-Hamadien 292
Abdulla, Salim 95, 342, 529, 537,
633, 676, 830
Abel, Jason A. 614
Abo-Shehada, Mahmoud 64, 397
Aboi, Madaki J. K. A. 494
Abot, Stephen 304
Abraham, David 89
Abrams, Jerry 102
Abu Ayyash, Luma 402, 889
Abudho, Bernard 310
Achan, Jane 705
Acharya, Deepak B. 92
Achee, Nicole L. 60, 63, 332, 583
Acholonu, Alex D. W. 280
Acosta, Luz 70, 335
Acuna-Soto, Rodolfo 732
Adam, Ishag 635
Adama, Soumahoro 496
Adams, A. P. 278
Adams, David P. 498
Adedapo, Aduragbenro D. A.

99, 414

Adedeji, Ahmed A. 88, 527
Adegbola, Richard 384
Adelman, Zach N. 643
Adema, Coenraad M. 285, 299, 1029
Ademowo, George O. 547
Ademowo, Olusegun G. 155,
179, 495
Adeyefa, Christopher A. O. 994
Adimi, Farida 185
Adjei, Ohene 388, 389
Adjei, Samuel 504, 637
Adjuik, Martin 103
Adler, Adam J. 62
Adu, Festus D. 994
Aeby, Eric 1070
Afolabi, Bangmboye 692
Agawo, Maurice O. 598
Agbenyega, Tsiri 651
Agbor, Jean Pierre 1027
Ager, Arba L. 173, 174, 822
Agnamey, Patrice 634, 717
Agnandji, Selidji 10
Agola, Eric L. 336
Agrawal, D. 378
Agrawal, N. 378
Agrawal, Swati 1069
Aguiar, Joao C. 217, 574

Aguiar, Marli 997
Aguilar, Patricia V. 927, 994
Aguilar-González, Sonia 272
Aguinaga, Juan G. 371
Aguirre, A. Alonso 467
Ahamed, Shakil 966
Ahmed, Be-Nazir 281, 955
Ahmed, R. 341
Ahmed, Sabeena 609
Ahn, Myoung-Hee 607
Ahn, Sun-Young 157
Ahn, Yvonne 680
Ahouidi, Ambroise D. 1021
Aide, Pedro 8, 9, 306, 572
Aiki-Raji, Comfort O. 994
Aimaku, Christopher O. 179
Aitken, Elizabeth 808
Ajariyakhajorn, Chuanpis 2
Ajayi, Ikeoluwapo O. 404, 406, 407
Akaki, Mayumi 366
Akanbi, Mathew O. 547
Akanbi, Olusegun M. 155
Akanmori, Bartholomew D. 192, 195, 198
Akhwale, Willis 338, 339, 351, 546
Akida, Juma A. 842
Akinsola, Adebayo 384
Akinyi, Sheila 806
Akkoclu, Gulgun 900
Akman-Anderson, Leyla 977
Ako, Berenger A. 496
Akogbeto, Martin 230, 621
Akpogheneta, Onome 302
Akter, Selim 636
Al-Ali, Faiza M. 79
Al-Ani, Mohammad S. Ahmad. 91
Al-Shelahi, Fatima A. 79
Alaii, Jane 339
Alam, Mohammad T. 201, 528, 877
Alangaden, George 719
Alarcon-Chaidez, Francisco J. 62
Albanese, Chris 146
Albers, Anna 389
Albonico, Marco 180
Albright, Rebecca G. 659
Alcantara, Leda 380
Aldstadt, Jared 264
Alera, Maria Theresa 760
Alessiani, Mario 73
Alexander, Neal 358
Alger, Jackeline 787
Ali, Ehsan 77
Ali Khan, Wasif 636
Alibert, Sandrine 818
Alisjahbana, Bachti 766
Alkeilani, Maysaa 91
Allan, Sandra A. 254
Allary, Marina 367

Allen, A. 207
Allen, Angela 1059
Allen, Linda 929
Allen, Stephen J. 1059
Allicock, Orchid M. 616
Allison, Geneve 609
Almela, Maria J. 511, 826
Almendares, Olivia 787
Almeras, Lionel 238
Almirón, Walter R. 398
Alonso, E. 511
Alonso, Pedro L. 8, 9, 306, 572
Alpers, Michael P. 1059
Alpha, Adamou 1022
Alphonsus, Kal 422
Altamura, Louis A. 612
Althabe, Fernando 787
Aluma, Simon 96
Aluvihare, Chana 240
Alvarez, Angela 512, 513
Alvarez, Jorge I. 34
Aly, Ahmed S. I. 364
Ama-Moor, Vicky 717
Amador, Domingo 787
Amador, Juan Jose 110
Ambrosio, Javier R. 273
Amemasor, Solomon 637
Amengo-Eteego, Seeba 726
Ampudia, Elizabeth 577
Anantapreecha, Surapee 107
Ananth, Cande 703
Anaya, Elizabeth 1046
Anders, Robin 300, 551, 554
Anderson, John F. 263, 590, 646
Anderson, Jennifer M. 1061
Anderson, Karen S. 823
Anderson, Michelle 643
Anderson, Robert 41
Andersson, Neil 645
Andrade, Christy C. 660
Andrade, Francisca M. 1047
Andreadis, Theodore 257, 263,
282, 602
Andrews, Kathy T. 165
Andrzejewski, Christopher 501, 638
Angele, Olivier 81
Angov, Evelina 12, 161, 215, 219, 220
Angulo-Barturen, Iñigo 512, 513
Annan, Zeinab 38
Ansong, Daniel 637
Anstead, Gregory M. 739
Anstey, Nick 354, 486, 544, 701
Anthony, Gabriel A. 720
Anthony, Robert 983
Anto, Francis 103, 597, 746
Antonelli, Lis R. V.. 312
Antonio-Nkondjio, Christophe 872
Anumudu, Chiaka 193, 524
Anyamba, Assaf 989

Anyona, Samuel B. 578
Anyorigiya, Thomas 103
Apara, A.U. 280
Aphasizhev, Ruslan 1074
Aphasizheva, Inna 1074
Apiwathnasorn, Chamnarn 232
Aponte, John J. 8, 9, 306, 572
Aponte, Samanda 837
Appawu, Maxwell A. 597
Apperson, Charles 402, 589, 889
Aradaib, Imad 372
Arai, Meiji 208
Arai, Satoru 958
Arama, Charles 324
Aranda, Miguel 738
Araujo Castillo, Roger V. 19,
683, 728
Araz, Engin 431
Arboleda, Margarita 758
Arcos-Teran, Laura 400
Ardelli, Bernadette F. 776
Arenas, Victor 898, 1046
Arévalo, Jorge 475
Arevalo-Herrera, Myriam 43
Arguello, D. F. 112
Arias, Jose 738
Arias, Patricia 33
Ariey, Frederic 811, 831
Arlian, Larry 433
Armah, George E. 439, 746
Armah, Henry 804, 1055
Armando, Gonzalez 33
Armien, Blas 28, 118, 764
Armijos, Veronica 459
Armstrong, Adam 905, 906
Armstrong, Philip M. 257, 263, 282
Arnathau, Céline 38
Arnold, Shannon 965
Aronson, J.F. 278
Aronson, Naomi E. 379
Arostegui, Jorge 645
Arriens, Sandra 785
Arrigo, N.C. 278
Arrigo, Nicole C. 615
Arriola, C. Sofia 30
Arrospide, Nancy 972
The ART Costing Study Team 704
Arterburn, Jeffery 923
Arvay, Melissa 439
Arvelo, Wences 17
Asante, Kwaku P. 726
Asare, Kwaku 804
Asgary, Ramin G. 408
Asghar, Rai 678
Ashley, Elizabeth 974
Ashorn, Per 808
Ashraf, Mohammad 149
Ashraf, Yusra Pervaiz 678
Asmah, Richard H. 746
Asnis, Deborah 77, 813, 902

Asoala, Victor 597
Assis, Juliana d. 482
Assmar, Mehdi 474
Astete, Helvio 623
Astete, H. 930
Atibu, Joseph 703
Atkinson, Peter A. 945
Atuguba, Frank 103
Aubry, Maite 449
Audcent, Tobey A. 427
Auguste, Albert J. 616, 688
Auld, Andrew 736
Auliff, Alyson 187
Avendaño, Adrian 894
Avery, Mitchell A. 639, 862
Avery, Melissa F. 890
Avery, Thomas 654
Aviles, William 86, 110
Avril, Marion 49, 580
Awandare, Gordon 20, 200, 321,
548, 549, 694, 707, 1056
Awes, Abdulkadir A. 546
Awinie, Elizabeth 726
Awobode, Henrietta O. 193
Awobusuyi, Jacob O. 651
Awono-Ambene, Parfait 38, 872
Ayala, Diego 1027, 1035
Ayala, Marta 797
Ayala, Virgilio 403
Ayala-López, Aurimar 109, 458
Ayanful, Ruth 211
Aybar, Viterbo 30
Ayede, Idowu 193
Azab, Mohamed A. 914

B

B, Bernadin 496
Ba, Yamar 466
Babu, Subash 666
Babur, Cahit 431
Bacellar, Olivia 312
Bacon, David J. 203, 416, 475, 525, 526
Badiane, El-Hadji 935
Badusche, Marlis 949
Bagayoko, Mamadou W. 508, 856
Bage, Jose T. 476
Baggett, Henry 327, 329, 330, 331, 908, 911, 915
Bagheri, Farideh 474
Bai, Ying 330, 331, 908
Baja, Abdullah 676, 830
Bakare, Adekunle A. 621
Baker, Anthony 713
Baker, Joanne 187
Baker, Murray 692
Baker, Virginia S. 692
Balabaskaran, Praveen 855, 857, 859
Balakathiresan, Nagaraja
Sethuraman 946
Balbino, Valdir Q. 397

Balcaitis, Stephanie 580
Balcioglu, Cuneyt 791
Balderrama, M 1001
Baldwin, Carson 125
Balkan, Suna 974
Balkin, E. Asher 139
Ballou, Ripley 8, 9, 10, 218, 572, 578
Balmaseda, Angel 25, 110, 645, 684
Balogun, Tunde 88, 527
Balsitis, Scott 6, 116, 117
Bamgboye, Afolabi 99, 406, 407
Banania, Glenna 304
Banda, Cesar A. 541
Bandi, Claudio 389
Banfield, Christine E. 297
Baniecki, Mary Lynn 652, 935, 821
Banu, Shakila 281, 955
Barban, Veronique 443
Barbe, Jacques 818
Barbollat, Laetitia 973
Barbosa, Arnoldo 9
Barbosa-Solomieu, Valérie 441, 455
Baret, Eric 818
Barillas-Mury, Carolina 39, 243, 885, 941, 1037
Barker, Christopher M. 584
Barker, Robert 652
Barnett, Adrian G. 290
Barnor, Jacob S. 275
Barnwell, John 338, 339, 806
Barón, Olga 886
Barre, Jerome 716
Barennes, H. 1005
Barrett, Alan D. T. 660
Barron, Eduardo A. 29
Bart, Jean-Mathieu 377
Barth, Erin N. 555
Barthel, Robert V. 76
Bartholomay, Lyric C. 953
Bartkovjak, Marian 711
Barzaga, Naile 813
Basáñez, María-Gloria 385, 772, 773
Basler, Christopher F. 927, 994
Bassat, Quique 8, 572
Bassirika, Issiaka 496
Bastos, Melissa S. 697
Bates, Paul 792
Bathini, Nagendrababu 63
Baton, Luke A. 40
Batsa, Linda 388, 389
Battelli, Giorgio 73
Batty, Kevin T. 501, 638, 1007
Baus, Esteban G. 400
Bausch, Daniel G. 186, 259
Bayard, Vicente 118
Bayat, Babak 44
Bayoh, M N. 587, 595
Bayoh, Nabie 1036
Beach, Raymond 175
Beasley, David W. C. 660

Beatty, Mark E. 768
Beatty, P. Robert 6, 116, 117
Beaty, Barry 641, 892, 893, 932
Bebell, Lisa 340, 706
Becerra-Artiles, Aniuska 24
Beck, Hans-Peter 973
Becker-Dreps, Sylvia I. 228
Beckett, Charmagne 115
Beckham, Simone 433
Beckius, Miriam 715
Beerntsen, Brenda 490, 493, 798, 861
Beeson, James G. 300, 301, 550, 551, 552, 554
Beesoon, Sanjay 690
Begum, Ramie H. 202
Behets, Frieda 228
Behr, Charlotte 195, 198
Bei, Amy K. 163, 1021
Beier, John C. 894, 1026
Bejarano, Zulma 837
Belizán, José 787
Bell, David J. 1003
Bell, Jeffrey A. 880, 883
Bell, Christine E. 175
Beltran, Manuela 756
Beltrán-Alzate, Juan C. 78
Benante, John Paul 63
Benitez, Jesus 796
Benjamin, Seleena 897
Bennett, Adam 177, 184, 560
Bennett, Corey J. 661
Bennett, Kent 1008
Bennett, Shannon N. 958
Bennuru, Sasisekhar 665
Bergel, Eduardo 787
Bergman, Lawrence W. 802
Bergmann-Leitner, Elke S. 12, 161, 215, 220
Berman, Josh 1001
Bern, Caryn 627, 786
Bernabe, Antonio 680
Bernal, Maruja 750
Bernal, Oscar 974
Bernard, Kristen A. 659, 661
Bernard, Nicholas 301
Bernhard, Sonja 476
Bernhardt, Scott A. 641
Berrada, Zenda L. 50
Bertholet, Sylvie 141
Besansky, Nora J. 1027, 1035
Bessoff, Kovi 756
Bethel, Jeffrey 469
Betley, Beverly A. 517
Beverley, Stephen M. 630
Bhalla, Ashish 432
Bharti, Praveen K. B. 201
Bhattacharjee, Apurba K. 63,
503, 656, 817, 819
Bhoi, Sanjeev 410, 742
Bhonsle, Jayendra B. 656, 817
Bia, Frank 1045
Biddle, Andrea K. 228
Bilenge, Constantin M. Mia. 476
Bin Nisar, Yasir 678

Binka, Fred 439, 746
Birnbaum, Ron A. 631
Birren, Bruce W. 162, 368
Biru, Estifanos 700, 849
Bishar, Rima 741
Bixby, Lisa M. 1072
Björkman, Anders 837
Black, Carla L. 307, 310
Black, William C. 232, 625, 626,
641, 867, 1038
Blackley, Shanley 3
Blair, Carol D. 231, 279, 455, 641
Blair, Patrick 681, 766
Blaney, Joseph E. 124, 347
Blank, Lydia R. 96
Blanton, Elizabeth 15
Blanton, Ronald 296
Blaze, Marie 356
Blazes, David L. 19, 104, 683, 728, 903
Bledzka, Alicja 781
Block, Karla 345
Bloland, Peter B. 529, 633, 676, 830
Blum, Lauren 933
Boakes, Eve 773
Boakye, Daniel A. 386, 596
Bob Sakha, Ndeye 831
Bockarie, Moses 358
Bodhidatta, Ladaporn 744
Boelaert, Marleen 481, 794
Boggiatto, Paola M. 142
Boivin, Jean-Francois 383
Boivin, Michael J. 695
Bojang, Kalifa 1004
Bolaji, Olayinka M. 88, 527
Bolarte, Jose 104, 728
Bolás-Fernández, Francisco 273
Bomlitz, Larisa 708
Bond, Vincent 804
Bonelo, Anilza 759
Boni, Maciej 532
Bonjardim, Cláudio A. 450
Booker, Michael L. 824
Boonpradit, Pornsiri 107
Boonti, Thum 586
Bopp, Cheryl 15
Boppana, Venkata D. 62
Bora, Hema 528
Borad, Anoli J. 609
Borchert, Nadine 985
Borrini, Katty 627
Borrmann, Steffen 651
Borrow, Ray 384
Borstnik, Kristina 653
Bosch, Irene 24
Bosio, Christopher 867, 912, 993
Botero, Sebastian 983
Boufana, Belchis 71
Bounlu, Khanthong 104
Bourgoin, Catherine 238
Bourguinat, Catherine 776
Boussinesq, Michel 773, 776
Bouzahzah, Boumediene 146
Bouzaidi-Tiali, Nabile 1070

Bowen, Anna 17
Bowen, Richard A. 660
Bowman, D. D. 399
Bowman, Natalie M. 786
Boykin, David 605
Bradamantis, Florelle 81
Bradley, David J. 42
Braga, Érika M. 697
Braga-Neto, Manuel B. 748, 753
Braig, Henk R. 318
Branch, OraLee H. 203, 727, 847, 850
Brando, Clara 45
Brandon, Michelle C. 234
Brandt, Jef 33
Brandt, Walter 48
Brasky, K. M. 278
Brasov, Ioana 483
Brasseur, Philippe 634, 717, 1005
Brater, D. C. 520
Brattig, Norbert 362, 389, 985
Brault, Aaron C. 660
Braunstein, Vicki L. 146
Bravo, Carmen 513
Brega, Sarah 973
Breiman, Robert 15, 619
Brelsfoard, Corey L. 437
Breman, Joel G. 224, 534
Breña, Judith P. 381
Brengues, Cécile 230
Brennan, Patrick J. 78
Brent-Kirk, Afiya 12, 219
Brewer, Christina M. 880
Breysse, Patrick N. 962
Briceno, Ireneo 583
Briceno, Marnie R. 827, 828
Bridges, Mickey 55
Brieger, William 178
Brindley, Paul J. 289, 1010
Bringaud, Fréderic 1068
Brinning, Douglas 928
Britch, Seth 262, 989
Brito, Cristiana F. Alves. 568, 570
Brito, Gerly A. C. 748
Brito, João R. M,. 745
Bronzan, Rachel 530
Brooks, Mohammed 535
Brown, Charles 211
Brown, Emily M. 998
Brown, Heidi 256, 602
Brown, Joe 53
Brown, James F. 298
Brown, Jessica M. 944
Brown, Mark R. 947
Brown, Ryan P. 642
Brown, Vincent 725
Bruder, Joseph T. 11, 48, 304, 581
Bruhn, Kevin W. 150, 631
Brun, Reto 605
Brunetti, Enrico 72, 73, 74, 373, 374
Bryant, Bart 231
Bryant, Juliet E. 1
Buathong, Rome 960

Buchy, Philippe 26
Buck, Gregory A. 440
Bucyibaruta, Blaise 734
Buekens, Pierre 473, 787
Buetikofer, Peter 1076
Buguliskis, Jeff 531
Bührlen, Martina 637
Bujard, Hermann 194
Bulla, Lee A. 825, 887
Buluma, Robert 546
Bulyk, Martha 1073
Bundy, Don A. P. 133
Bungiro, Richard 628
Burbelo, Peter B. 135
Burdan, L544
Burga, Rosa 750
Burgess, Steven J. 655
Burgess, Timothy 115, 681, 766
Burkhard, Peter 45
Burkom, Howard 104
Burkot, Thomas R. 464, 890
Burnette, W N. 102
Burns, Jr., James M. 320, 802
Burri, Christian 476
Busch, Wibke 637
Büscher, Philippe 481
Bustamante, Dulce M. 121, 403
Bustamante, Juan M. 669, 1072
Butler, Ashley 125
Butman, Bryan T. 48
Buttaro, Caitlin 1014
Büttner, Dietrich W. 389
Büttner, Marcelle 389
Buzetti, Wilma A. Starke. 482
Bwanika, John B. 96
Byarugaba, Justus 352
Bystryn, Jean-Claude 46

C

Cable, Richard G. 1044
Cabrera, Lilia 749, 786
Caccone, Adalgisa 872
Cafferata, María Luisa 787
Caffrey, Conor R. 292, 293
Cahill, John 405
Cajal, Silvana 89
Caldeira, Roberta L. 294
Calderon, Carmen 35
Calderon, Maritza C. 749
Calderon-Arguedas, Olger 894
Calderon-Martinez, Jose Joaquin 893
Calderwood, Stephen 18, 609
Calisher, Charles H. 932
Calvert, Amanda E. 1
Calvo, Sarah 489
Cama, Vitaliano 266
Camacho-Nuez, Minerva 106
Camargo, Simone 333
Camino, I. 511
Campanella, Richard 1034
Campbell, Grant L. 1043
Campbell, Robert K. 477

Campos, Cornelio 118
Canelo, Alexander 738, 1046
Canfield, Craig J. 173, 174
Cantin, Beth Ann 782
Cantin, Greg T. 370
Cao, Q.T. 207
Cao-Lormeau, Van-Mai 449
Capeding, Maria Rosario 344
Cappello, Michael 628
Caram, Mariana 28, 350, 764
Caray, C. 930
Carcamo, Alvaro 645
Carcamo, Cesar 206
Cardenas, Rocio 1000
Cardinal, Marta V. 394
Cardona, William 886
Cardona-Castro, Nora M. 78
Caridha, Diana 502
Carlo, Joelle M. 1032
Carlone, George 384
Carlos, Daniela C. 137
Carlson, Jonathan O. 625
Carlton, Jane 850
Carr, Kathleen W. 618
Carr, Roxanne 90
Carrington, Christine V. F.. 616, 688
Carrión, R. 930
Carrion, Jr., R. 278
Carroll, Darin S. 614, 991
Carroll, Ryan W. 807
Carter, Terrell 10
Carvalho, Edgar 312
Carvalho, Eunice B. 748
Carvalho, Edgar M. 283, 380
Carvalho, Luzia H. 570
Carvalho, Omar S. 294
Carvalho-Queiroz, Claudia 291
Casares, Sofia 581
Casseb, Samir M. 755
Castañeda, P. 511
Castelan-Martínez, Osvaldo D. 188
Castellanos, Alejandro 610
Castellanos, Angélica M. 571
Castellanos-Cuervo, Paula 400
Castelletto, Michelle L. 984
Castelli, Federica 374
Castellini, Meryl 531
Castillo, Leticia 28, 764
Castillo, Rafael 269, 270, 271, 272
Castillo, Yesenia 33
Castillo-Bocanegra, Rafael 273
Castro, Fanny 884
Castro, Ibraim C. 748, 752
Castro, Luiza A. 931
Castro, Marcia C. 227, 261, 845, 848, 851
Castro, Nina 266
Castro, Neviton 283
Castro, Xochitl 403
Cator, Lauren J. 253
Causer, Louise 338, 339
Cavasini, Carlos E. 697

Ceballos, Leonardo A. 394
Celermajer, David 486
Centeno, Ruth 884
Cernetich-Ott, Amy 802
Cerqueira, Gustavo 286
Cersovsky, Steven 1008
Certain, Laura K. 827, 828
Cespedes, Manuel 1046
Cetina-Trejo, Rosa C. 465
Cevallos, William 328
Chagas Júnior, Adenizar 98
Chahal, Jasdave 1073
Chai, Jong-Yil 567, 608, 840
Chaisri, Urai 604
Chaki, Prosper 41, 227, 845, 848
Chakravarty, J. 378
Chalé-Balboa, Wilberth G. 151, 152
Chambers, Eric W. 890
Champagne, Donald E. 393, 642, 947
Chan, Adeline S. T. 483
Chan, Joanne 995
Chan, Teik-Chye 434
Chan Thap, Lon 934
Chanama, Sumalee 107
Chancafe, Jorge A. 738, 1046
Chand, Gyan 183
Chanda, Pascalina 87, 355, 539, 543, 569, 674
Chandra, Prafulla K. 247
Chandrasekar, P. H. 719
Chandre, Fabrice 230
Chang, Gwong-Jen. J. 127
Chang, Moh Seng 26, 350
Chang, Wonsuk 653
Chantha, Ngan 28, 764, 897
Chao, Chien-Chung 434, 436
Chapilliquen, Fernando 884, 898
Chareonviriyaphap, Theeraphap 586
Charlebois, Edwin D. 705, 706
Charles, Marie 708
Charriere, Fabien 1070
Charron, Brigitte 716, 717
Charurojpakorn, Chulaluck 515
Chattopadhyay, Suchismita 434
Chauhan, Chitra 874
Chauhan, Kamalesh R. 63
Chauhan, Virander S. 222, 566
Chaurasia, R. G. 182
Chaves, Luis F. 999
Checchi, Francesco 974
Checkley, Anna M. 356
Chelimo, Kiprotich 303, 556
Chen, Chien-Shien 921
Chen, Huiyuan 3
Chen, Honggen 290
Chen, Hua-Wei 436, 1066
Chen, Jun Hu 840
Chen, Jessica 959
Chen, Li-Kuang 127
Chen, Lan 345
Chen, Nanhua 187, 970
Chen, Ping 48

A-4

 Important Note: The number(s) following author name refers to the abstract number.Chen, Wei-June 126
Chenet, Stella M. 203, 525
Cheng, Pei L. 631
Cheng, Qin 187, 563, 829, 970
Cherry, Sara 990
Cheun, Hyeng-II 267
Chiang, Jannifer O. 123, 131
Childs, James 256
Chille, Masunga M. 842
Chimpeni, Phillips 1003
Chimutete, Mutale 355
Ching, Wei-Mei 434, 436, 1066
Chiodini, Peter L. 356
Chiou, Shyan-Song 127
Chipeta, James 355
Chirwa, Brian 841
Chisenhall, Daniel M. 470
Chishimba, Sandra 229, 938
Chitnis, Chetan E. 191, 306
Chitnis, Nakul 671
Chizema, Elizabeth K. 539
Cho, Pyo-Yeon 267
Cho, Pyo Yun 284
Cho, Shin-Hyeong 538
Chokephaibulkit, Kulkanya 2
Chong, Curtis R. 961
Chotivanich, Kesinee 515
Chotmongkol, Verajit 428
Chou, Tom 205
Chouaibou, Mouhamadou S. 865
Chowdhurry, Fahima 18
Chowdhury, Imtiaz A. 281
Chretien, Jean-Paul 104, 415, 438, 989
Christensen, Bruce M. 953
Christianson, Diane 1045
Chu, Yong-Kyu 923, 929
Chuang, Ching-Kai 126
Chuang, Ilin 11, 304, 581
Chuang, Ting-Wu 599
Chukwuocha, Uchechukwu M. 100, 413, 420
Chung, Dong Hoon 923
Chuquiyauri, Raul 541
Churcher, Thomas S. 385, 773
Chuxnum, Teerasak 911
Chwaya, Hababu 180
CIETNicaragua Dengue Group 645
Cislo, Paul 1060
Cisneros, Alejandro 106
Cissé, Guéladio 729
Claborn, David 583
Claps, Guillermo L. 398
Clardy, Jon 652, 821, 824
Clark, Eva 727
Clark, Gary G. 65
Clark, Kathryn 102
Clark, Tamara D. 675
Clegg, J.B. 207
Clem, Rollie J. 231, 279
Clements, David 305
Clennon, Julie 896
Coberly, Jacqueline 104

Coetzee, Maureen 591
Cogswell, Frank B. 509, 639
Cohen, Joe 8, 9, 10, 44, 218, 572, 578
Cohen, Justin M. 999
Colborn, J. M. 856
Colborn, James M. 913
Cole, Dana 59
Cole-Tobian, Jennifer 159
Colebunders, Robert 937
Coleman, Morton 1045
Coleman, Russell E. 185, 401, 444, 483
Coler, Rhea N. 141
Colley, Daniel G. 307, 310, 664
Collin, Nicolas 391, 981
Collins, Matthew H. 1072
Collins, William E. 509
Coloma, Josefina 86, 645
Colon, Candimar 754
Comer, James A. 281, 955
Comte, Eric 722, 974
Conn, Jan E. 249, 882
Connor, Elizabeth B. 428
Connors, Nicholas 530, 1053
Conroy, Andrea 799
Conway, David 197, 210, 302, 696, 812
Cook, Joseph 129
Cook, Joseph A. 901, 958
Cook, Peter E. 979
Cooper, Margarethe 266
Cooper, Roland 1067
Copeland, Curtis C. 751
Coppage, Myra 3
Coppens, Isabelle 647
Coppi, Alida 505
Corbel, Vincent 230
Cordoba, Liliana 249
Cordova-Benzaquen, Eleazar 627, 786
Cornejo del Carpio, Juan G. 627, 786
Corran, Patrick 302, 696
Corre, Sandra 214, 831
Correa, Margarita M. 249
Correa-Oliveira, Rodrigo 291
Correnti, Jason M. 1010
Cortinas, Roberto 1060
Cosio, Gabriela 632
Costa, Carlos 391
Costantini, Carlo 1027, 1035
Coudeville, Laurent 349
Coulibaly, Aliou 508, 856
Coulibaly, Cheick 242
Coulibaly, Drissa 14
Coulibaly, Karim 409
Coulibaly, Mamadi 186, 259
Coulibaly, Michel E. 952
Coulibaly, Yaya 952
Courtenay, Orin 792
Coutinho, Bruna P. 745, 752, 753
Coutinho-Abreu, Iliano V. 64, 397
Cowman, Alan F. 300, 550

Cox, Jonathan T. 590
Crabtree, Mary B. 1
Craft, Noah 150, 631
Craig, Philip S. 71
Creek, Tracy 16, 17
Crespo Ortiz, Maria del Pilar 654
Crevat, Denis 443, 454
Crill, Wayne D. 127
Crockett, Maryanne 920
Cronstein, Bruce N. 311
Cropp, Bruce 460
Crosby, Seth D. 362, 779
Crow, Emily T. 309
Crowley, Michael R. 847
Crozier, Sarah 812
Cruz, Ana C. R. 123, 131
Cruz, Karyn 884
Cubillas, Luis 884
Cui, Liwang 545
Cummings, Richard D. 334
Curatola, Antonino G. 680
Curns, Aaron 439
Curtis, Kurt C. 777
Curwen, Rachel 296
Custers, Jerome H. 44
Cutler, Stephen J. 639
Cutrera, Ana Paula 67
Cuzin-Ouattara, Nadine 846
Cysticercosis Working Group in Peru 30, 31, 371
Czesny, Beata 518
Czokajlo, Darek 68, 402, 585, 889

D

D'Acremont, Valerie 337
D'Alessandro, Umberto 206, 833, 937, 1005
D'Angelo, John 1057
D'Arcádia, Rosane R. 697
D'Ombrain, Marthe C. 301
da Fonseca, Flavio Guimaraes 991
da Nóbrega, Aglaêr A. 793
da Silva, Alexandre J. 810
da Silva, Eliana V. P. 123, 131, 755
da Silva, Érika V. S.. 137
da Silva-Nunes, Mônica 697
Da'Dara, Akram A. 1051
Dabiré, Kounbobr R. N. 241
Dabo, Abdoulaye 324
Dabod, Elijah 159
Dada-Adegbola, Hannah O. 179,

495

Dadzie, Samuel 597
Dahlbäck, Madeleine 49
Dai, Bui 94
Daily, Johanna P. 162, 368, 369, 489, 734, 935
Dale, James 382, 917
Dalvi, Rahul 630
Daly, Thomas M. 802

Dama, Souleymane 421, 712, 835
Damon, Inger K. 614, 991
Daniels, Rachel 204
Danko, Janine 115
Dantur Juri, María J. 398
Dao, Adama 588, 1022, 1057
Dao, Hoang Thi Nhu 456
Dao, M.T. 207
Dao, Nguyen V. H. 94
Daou, Modibo 324
Dara, Antoine 712
Dardick, Kenneth 1045
DaRe, Jeana T. 181
Das, Manoj K. 528, 877
Das, Pradeep 85, 624
Das, Suchismita 978
Dasch, Gregory A. 1066
Dasgupta, Tina 823
Dash, Aditya P. 182, 183, 194,
202, 341, 528, 535
Dash, A P. 1055
Dash, Paban K. 617
Daszak, Peter 467, 954, 956, 995
Dave, Kirti 483
Dave, Sonia 483
Davenport, Gregory 20, 200,
321, 353, 548, 549, 694, 707, 1056
David, Makindi 809
David, Ryan 405
Davies, Stephen 293, 295, 297,
309, 311
Davila, Santiago 400
Davis, A. P. 314
Davis, Derek 187
Davis, Larry 663
Davis, Margarett 16, 17
Davis, Timothy M. E. 181, 1007
Davis-Rivers, Andrea N. 440
Dawson, Harry 983
Day, Karen P. 649, 1059
Day, Tim A. 953
Dayal, A 90
de Bosch, Norma 24
de Jesus, Amelia R. 283
de Koning, Harry 516
de la Garza, M. 278
De La Vega, Patricia 217
de Luise, Cynthia 517
de Monbrison, Frédérique 968, 973
de Oliveira, Ana 363
De Paula, Sérgio 0. 757
de Vlas, Sake J. 359
De-Cozar, Cristina 171
Dea-Ayuela, Maria A. 273
Deans, Anne-Marie 702, 1058
Debatis, Michelle 629
Debrah, Alexander Y. 388, 389
deBruyn, Becky 874
DeCaprio, David 162
DeGaetano, Arthur 265
Deininger, Susanne 197
DeJong, Randall 1037

Dejsirilert, Surang 915
Del Cid, Jaime 787
del Rosal, Marina 826
Delgado, Richard C. 206
della Torre, Alessandra 871
Delphine, Aldebert 553
Delroux, Karine 646
Dembele, Benoit 952
Dembele, Demba 421, 492, 835, 1057
Demir, Samiye 791
Demoitié, Marie-Ange 8, 10, 12, 44, 572
Deng, Haiyan 514, 639
Denis de Senneville, Laure 238
Denlinger, David L. 233
Dennull, Richard A. 820
Dent, Arlene E. 556
DeOlivera, Ana 781
DeRocher, Amy 647
Dery, M. A. 416
Desai, Megnha 535
Desai, Manish A. 895
Desai, M. R. 341
Desai, Prashant V. 862
Descloux, Elodie 449
DeSilva, Erandi 1073
Desruisseaux, Mahalia S. 805
Desta, A. 718
Dev, Vas 877
Devi, Sangeeta 566
Devine, Gregor J. 623
Di Paolo, Adriana 89
Dia, Ibrahima 466
Diabate, Abdoulaye 588, 1022
Diakite, Souleymane 384
Diallo, Abdallah 952
Diallo, Boubacar 508
Diallo, Dapa A. 14, 1058
Diallo, Mawlouth 466
Diallo, Souleymane 326
Diarra, Issa 324
Dias, Sajani 191
Diassiti, Angelina 920
Diawara, Aissatou 133
Díaz, André 30
Diaz, A. 957
Diaz, Francisco J. 446
DiBlasi, Michael 891
Dickason, John 1045
Dicko, Alassane 13, 14, 421, 492, 651
Dicko, Adama 409
Dicko, A 710
Dicko, Yaya 717
Diemert, David 13
Dieng Sarr, Moussa 935
Diet, Tran V. 452
Dieye, Alioune 214
Diffenbaugh, Noah S. 657
Diggs, Carter 11, 48, 304, 581
DiGiacomo, Giuseppina 158
Dillon, Gary 296
Dimaano, Efren 119
Dimech, George S. 997

Dimopoulos, George 40, 640, 943, 978
Dinguirard, Nathalie 1030
Dinkel, Anke 372
Diouf, Ababacar 13, 48, 425
Diraviyam, Karthikeyan 1002
Dituvanga, Ndinga D. 476
Diuk-Wasser, Maria A. 256, 602, 1060
Djikeng, Appolinaire 286
Djimde, Abdoulaye A. 14, 421, 492, 635, 712, 835, 1057
Djogbenou, Luc 230
Djouaka, Rousseau F. 621
Do, Q.A. 207
Dobaño, Carlota 306
Dobbelaere, Dirk A. 1076
Dobler, Gerhard 463, 904
Dobson, Andrew P. 956
Dobson, Stephen L. 437
Dodean, Rosie 822
Dodoo, Daniel 192
Doerner, Frank 722
Dohn, Anita L. 138
Dohn, Michael N. 138
Dokomajilar, Christian 340, 423, 706
Dolo, Husseini 952
Dolo, Ibrahim 508
Dominguez-Galera, Marco 893
Doms, Robert W. 612, 990
Donelson, John E. 144
Dong, Carolyn 369, 489
Dong, John 345
Dongier, Pierre 383
Dongus, Stefan 261, 848
Donnelly, Christl 349
Donnelly, Martin 865
Donner, Marie-Noelle 44
Donovan, Michael J. 670
Doolan, Denise L. 11, 48, 304, 581
Doorley, Sara 408
Dorabawila, Nelum 334
Dorfman, Jeffrey R. 580
Dorji, Tandin 113
Dorsey, Grant 93, 340, 675, 705, 706, 1005
Dosoo, David K. 726
Dotson, Ellen M. 67, 394
Doty, Jeffrey B. 932
Douglas, Jessica 785
Doumbia, Mama N. 326, 740
Doumbia, Seydou 409, 510, 710, 868
Doumbo, Ogobara K. 13, 14, 324, 421, 492, 635, 712, 835, 1057
Dow, Geoffrey S. 357, 502
Dow, Steven 993
Dowell, Scott F. 330, 331, 908
Dozie, Ikechi N. S. 100
Dozie, Ikechukwu N. S. 413, 420
Drake, Lesley J. 133
Drescher, Axel W. 261

Duah, Nancy O. 302
Dubey, Mohan L. 521
Dubois, Marie-Claude 8, 10, 44, 572
Dubois, Patrice M. 44
Dubovsky, Filip 8, 9, 572
Duc, Hoang M. 644
Ducatez, Mariette M.F. 682
Duffull, Steve 486
Duffy, Patrick E. 322, 580, 1054
Duggal, Priya 964
Dujardin, Bruno 481
Dujardin, Jean-Pierre 394
Duke, Brian O. L. 776
Dumas, Rafaele 344
Dumontiel, Eric 151, 152, 787
Duncan, Elizabeth H. 12, 161, 215, 220
Dung, Nguyen Minh 452, 1042
Dunham, Eleca J. 616, 688
Dunn, John 260
Dunstan, SJ 207
Duong, Socheat 26
Duong, Veasna 26
Dupressoir, Anne 466, 689
Dupuis, Alan P. 467
Duraisingh, Manoj T. 163, 1021
Durand, Patrick 38
Durbin, Anna P. 213, 347
Duriseti, Sai 488
Durvasula, Ravi 624
Dusfour, Isabelle C. 60, 583
Dushoff, Jonathan 956
Dutra, Walderez O. 312, 316
Dutta, Sheetij 303
Dvorak, James A. 487
Dzinjalamala, Fraction K. 530, 834, 969

E

Eampokalap, Boonchuay 327, 329
Easterbrook, Judith 277
Ebel, Gregory D. 129, 661
Ebringer, Andrew 187
Echevarria, Leonor 663
Echeverry, Diego 837
Edelman, Robert 216
Eder, Gerald 122
Edgil, Dianna M. 768
Edoh, Dominic 192
Edstein, Michael D. 94, 173, 174
Edwards, Camille 186, 259
Egah, Daniel 692
Egger, Joseph R. 447
Egyir, Beverly 211
Ehrenkaufer, Gretchen M. 1048
Eigege, Abel 422
Eisele, Thomas P. 177, 184, 560
Eisen, Lars 58, 888, 892, 893
Eisen, Rebecca J. 58
Eisenberg, Joseph N. S. 51, 52, 328, 895

Eitoku, Chiho 575
Ejigsemahu, Yeshewamebrat 700, 849
Ekanayake, Sajeewane 444
Ekgatat, Monaya 911
Ekloh, William 198
Eksi, Saliha 518
El Setouhy, Maged 360, 361
El-Aassar, E M. 79
El-Hossary, Shaaban 61, 64, 397
El-Kamary, Samer 731
El-Mohamady, Hanan I. 905
El-Sayed, Najib 286, 1033, 1050
Elamin, Mohamed 372
Eldridge, Bruce F. 584
Elie, Cheryl 384
Elizondo, Douglas 25
Elizondo-Quiroja, Darwin 892, 893
Elliman, Jennifer 771
Elling, Berty F. 529, 537
Ellis, Ruth D. 213
Ellis, William 650
Elmendorf, Heidi G. 967
Elnahas, Ayman 372
Elnaiem, Dia-Eldin 69, 391, 396, 981, 1039, 1052
Emerson, Ginny 991
Emerson, Paul 700, 849
Endeshaw, Molla 1002
Endeshaw, Tekola 700, 849
Endy, Timothy 763, 767
Eng, Jeffrey L. K. 386
Enright, Bill 48
Epstein, Judith E. 11, 43, 216
Epstein, Jonathan H. 954, 956
Erdman, Laura 632
Eren, Hasan 788
Erexson, Cindy 1017
Erickson, Sara M. 953
Ernst, Kacey C. 814, 853
Ertabaklar, Hatice 148, 788, 791
Ertug, Sema 148, 788
Escalante, Ananias A. 203, 860, 971, 972
Escobedo, K. 930
Escombe, A. Roderick 680
Escueta, Aleyla S. 564
Esmat, Gamal 731
Espinosa, Avelina 965
Espinosa, Benjamin J. 747, 750, 928
Espinoza, Yrma 381
Espinoza Zegarra, Nereyda 747
Esposito, Joseph 274
Essamia, Fabian 651
Essbauer, Sandra 463
Essel, Kofi 899
Esteves, Gabriela 98
Etang, Josiane 865
Etheridge, Ronald 1074
Etouna, Joachim 1035
Ettestad, Paul 663
Ettling, Betty F. 95
Evans, Carlton A. 680

Evans, James E. 649
Evans, Sandra 435
Eversole, Rob R. 387, 982
Ewing, Dan 345
Eyamba, Albert 770
Eyangoh, Sarah 722
Eza, Dominique 930
Ezedinachi, Emmanuel 651

F

Faccioli, Lúcia H. F.. 137
Fagbenro-Beyioku, Adetayo F. 523
Fairfax, Keke C. 628
Fairlie, David P. 165
Falade, Catherine O. 179, 404
Falade, Cathrine O. 495, 547
Falta, Michael T. 316
Fantappie, Marcelo R. 1032
Farah, Omar 619
Farfan-Ale, José A. 465, 893
Farias, Kleber J. S. 931
Farid, Hoda A. 360, 361
Farnon, Eileen C. 1043
Farrar, Jeremy 22
Farrar, J.J. 207
Farrar, Jeremy 452
Faruque, Abu S. G. 18
Fatoumata, Dicko-Traore 712
Faucette, Laurence 1017
Faulde, Michael 463
Favata, Mike 415
Fawaz, Emad 64, 397
Fawole, Funmi 99
Faye, Babacar 717
Faye, Ousmane 409, 466, 710
Feagin, Jean E. 647
Febles, Taynet T. 77
Fegan, Gregory 554
Fehintola, Fatai A. 88
Feikin, Daniel 15, 619
Feng, Carl G. 667
Feng, Gaoqian 808
Feng, Zheng 290
Fenton, Michael E. 76
Ferdig, Michael T. 160, 854, 939
Ferguson, David J. 604
Ferguson, Heather 593
Fernandes, Liselle 693
Fernández, Alejandra 512, 513
Fernandez, Miguel 19, 683
Fernandez, Roberto 898
Fernandez-Salas, Ildefonso 626, 893
Fernández-Velasco, D. Alejandro 271
Ferreira, Marcelo U. 697
Ferrell, Robert 200, 321, 548, 1056
Ferrer, Santiago 512
Ferrer-Rodriguez, Ivan 836
Ferro, Cristina 797
Fidock, David A. 505, 940

Field, Hume E. 954, 956
Figueira, Claudio P. 98
Fikrig, Erol 590, 646
Filice, Carlo 72, 73, 374
Filipe, João A. 773
Filler, Scott 704
Fillinger, Ulrike 41, 41, 227, 261,
845, 848, 851
Filone, Claire Marie 990
Fimmers, Rolf 389
Findlow, Helen 384
Finney, Olivia 197, 696
Firbas, Christa 687
Fischer, Kerstin 362, 785
Fischer, Marc 1041
Fischer, Peter U. 362, 785, 777, 985
Fish, Durland 256, 602, 1060
Fisher, Cynthia 329
Fisk, Tamara 331
Fisk, Tamara L. 908
Fitzpatrick, Nicole 110
Flannery, Brenden 21
Fleischer, Bernhard 949
Flores, Diana 6, 117
Flores-Flores, Luis F. 465
Flores-Mendoza, Carmen 884
Flores-Suarez, Adriana E. 626
Florey, Lia S. 699
Florin, David 623, 866, 884
Fofana, Bakary 421, 492, 835, 1057
Fogako, Josephine 559
Folarin, Onikepe A. 88, 524, 527
Foley, Desmond H. 881
Fonseca, Benedito A. L. 120,
450, 757, 761, 931
Fonseca, Dina 875
Fontenille, Didier 38, 238, 1027, 1035
Fontenot, Andrew P. 316
Fontes, Cor J. Fernandes. 568
Foppa, Ivo M. 600, 1045, 1062
Forbes, Wayne M. -. 132
Ford, Karen 692
Ford, Robert 692
Formenty, Pierre 989
Formica, Alessandra 122
Fornadel, Christen M. 250, 591, 879, 896
Fornasini, Gianfranco 1009
Forrat, Remi 344
Forsyth, Simon J. 290
Foster, Woodbridge A. 1026
Foster, Stanley O. 175
Fottrell, E 718
Fouda, Genevieve Giny 425
Fowkes, Freya J. I. 1059
Fowler, Elizabeth V. 563
Fox, LeAnne M. 678
Fox, Matthew P. 678
Foxman, Betsy 328
Frace, Mike 991
Fraga, Lucia A. O. 291, 293, 311
Francis, Filbert 842

Francis, Susan 580
Franco, Jose R. 476
Franco-Paredes, Carlos 796, 1000
Franz, Alexander 441, 455, 1038
Fraser, Malcolm J. 1010
Freed, Brian 316
Freitas, Daniel 997
Frempong, Margaret T. 596
Freundlich, Joel S. 505
Fried, Michal 322, 580, 1054
Friedman, Jennifer 70
Frolov, Ilya V. 658
Frosch, Matthias 375
Fryauff, David 61, 597
Fujita, Wendy 998
Fukuda, Mark 218, 430, 565, 636, 832, 863, 934
Fuller, Douglas O. 894
Furman, Richard R. 1045
Fusaï, Thierry 238, 818
Fusch, Christoph 803

G

Gad, Adel M. 360, 361, 1040
Gaither, Amber D. 834
Galagan, James E. 162, 368, 579
Galinski, Mary R. 806
Galler, Ricardo 98
Gallup, Jack 315
Gálvez-Buccollini Abanto, Juan

A. 723

Gambhir, Manoj 909
Gamboa, Dionicia 206
Gamboa-Leon, Rubí 787
Gamo, Francisco-Javier 171
Gandhi, Deepika 90
Ganesan, Suresh 858, 859
Ganeshan, Harini 304
Ganley-Leal, Lisa M. 664
Gao, Qi 970
Gaona, Heather W. 656, 817
Garcez, Lourdes 792
Garcia, Hector 31, 33
Garcia, Hector H. 29, 30, 35, 371
Garcia, Héctor H. 903
Garcia Bustos, José-Francisco

171, 505

Garcia-Miss, Maria 151
García-Pérez, Adolfo 512
Garcia-Rejon, Julian 465, 465, 893
Gardella, Catalina E. 106
Gardiner, Donald L. 165
Gardner-Santana, Lynne C. 959
Gardon, Jacques 776
Gargallo, Domingo 511, 512, 513, 826
Garges, Eric 1008
Garnett, Geoff 349
Garrido, Fàtima 28, 764
Garrison, Laurel E. 59
Garuti, Helena 512, 513
Garver, Lindsey S. 943

Gasasira, Anne F. 705, 706
Gascot, Edalish 836
Gatakaa, Hellen 554
Gates, Casey 368
Gatewood, Anne 1060
Gatlin, Michael R. 307
Gatraud, Paul 505
Gatti, Simona 72
Gatton, Michelle L. 563, 829, 970
Gaur, Upasna 630
Gause, William 983
Gavidia, Cesar M. 29, 371
Gay, Cyril G. 412
Gaydos, Joel C. 438
Gaye, Oumar 634, 717, 1004
Gazzinelli, Giovanni 291
Gba, Bernadin 496
Gbotosho, Grace O. 88, 524, 527
Gbotosho, Sola 404
Gebre, Teshome 700, 849
Gebregeorgis, Elizabeth M. 573
Geerken, Roland 1060
Gehrke, Andrew 1073
Geissbühler, Yvonne 41, 227,

845, 848

Gelfand, Jeffrey A. 1045
Genco, Francesca 72
Genet, Asrat 700
Genov, Jordan 373
Genton, Blaise 337, 973
Gerena, Lucia 170, 415, 503, 656, 817
Gerrets, Rene P. 529
Getachew, A. 718
Getis, Arthur 264
Getrtraud, Regula 97
Gettayacamin, Monthip 218, 503
Getz, Tony 580
Gewurz, Ben 1045
Ghabour, Sylvia 905
Gharib, Sina A. 1018
Ghedin, Elodie 1068
Ghosh, Kashinath 318, 480, 624
Ghosh, Mousumi 142
Gibble, Joan 196
Gibbons, Peter L. 501
Gibbons, Robert V. 2, 113, 429,
763, 765, 767, 760
Gibson, Gabriella 1023
Gibson-Corley, Katherine N. 143
Gicheru, Nimmo 554
Gil, Ana I. 903
Gil, Pedro 837
Gill, Jeff 584
Gilman, Robert H. 29, 30, 31, 33, 266, 541, 627, 680, 749, 786, 866
Gimite, Dereje D. 149
Gimnig, John E. 587, 595, 1036
Gingrich, John B. 875
Ginsberg, Michele 469
Giraudoux, Patrick 71
Girault, Lang 466, 689

Giron, Luis Israel 787
Girouard, Autumn S. 961
Gitau, Evelyn N. 485
Gitawati, Retno 486
Githure, John I. 248, 1026
Gittleman, John 995
Glanfield, Amber 308
Glass, Gregory E. 108, 277, 896, 959
Glass, Jonathan 104
Glass, Roger I. 439
Gnémé, Awa 846
Go, Rodrick 507
Goade, Diane 129, 663
Gobert, Geoffrey N. 287, 289, 1010
Goethert, Heidi K. 901, 1062, 1063
Goetz, Sue 994
Goetz, Scott J. 467
Goff, Jay 992
Goff, Tami 196
Goh, Li Ean 651
Goka, Bamela Q. 195, 198
Goldin, Robert 452
Golemanov, Branimir 373
Gollob, Kenneth J. 312, 316
Gomes, Regis B. 69, 391, 396, 981, 1039, 1052
Gomes-Ruiz, Alessandra C. 120, 450
Gomez, Andres 467
Gomez, Rosa 852
Gomez, Tangni 25
Gómez, Vanesa 512, 513
Gomez-Benavides, Jorge 957
Gomez-Carro, Salvador 893
Gomez-de-las-Heras, Federico 171
Gomez-Escobar, Natalia 197, 210, 812
Gomez-Machorro, Consuelo 874
Gonçalves, Lígia A. 1019
Goncalvez, Ana P. 457
Gong, Hong Fei 265, 592
Góngora, Rafael 797
Gonzaga, Victor E. 903
Gonzales, Armando E. 29, 30, 31, 35
Gonzales, Joseph M. 160, 939
Gonzalez, Alcides 110
González, Bárbara 836
González, Gloriene 836
Gonzalez, Jesus 332
Gonzalez, Rodrigo 1022
Gonzalez-Cerdas, Rodrigo 876
Gonzalez-Ceron, Lilia 852
Gonzalvez, Guillermo 30, 31
Goodin, Douglas 929
Goodman, Catherine 499
Goodrich, Raymond P. 606
Gopi, P G. 666
Gopinath, Shankar P. 32
Gordon, Aubree 25, 684
Gordon, Scott 332

Gore Saravia, Nancy 797
Gorman, Ann Marie 461
Gose, Severin 49
Goshu, Samrawit 518
Gosi, Panita 863
Goto, Yasuyuki 141
Gottstein, Bruno 97, 377, 963
Gotuzzo, Eduardo 986
Gouagna, Louis C. 1026
Goudsmit, Jaap 44
Gould, Fred 946
Govella, Nicodem 41, 227, 845, 848
Govil, Dhwani 274, 991
Gowda, D. Channe 1020
Gowda, Kalpana 48
Graczyk, Thaddeus K. 961, 962
Graf, Paul C. F. 438, 1065
Graham, Sean 926
Grais, Rebecca 722
Granda, Bertha 1046
Grande, Tanilu 206
Grandesso, Francesco 725
Granger, Don 486
Grant, Alan J. 244
Grant, Dorsey 423
Gratias, Kambau M. Deo. 476
Graves, Patricia 700, 849
Graves-Abe, Katie 708
Graviss, Edward A. 32
Gray, Darren J. 290
Gray, Ronald L. 96
Green, Sharone 453, 765, 767
Greenaway, Christina 383
Greenbaum, Doron 491
Greenberg, Robert M. 288, 1031
Greene, Jennifer 695
Greenhouse, Bryan 675
Greger, Stephanie 631
Gregory, Robin 187
Greif, Gisela 963
Grieco, John P. 63, 60, 583
Griffing, Sean M. 971, 972
Griffith, Matthew 714, 715
Grigorov, Nikola 373
Grijalva, Mario J. 400
Grimberg, Brian T. 809
Grinstein, Sergio 632
Grisolia, Antonella 72, 73, 374
Gross, Tiffany 643
Grube, Marcus 803
Gruener, Beate 375
Gu, Weidong 246, 248, 252
Guerin, Philippe J. 974
Guerrant, Richard L. 440, 745, 748, 751, 752, 753, 1047
Guerena-Burgueno, Fernando 618
Guiguemdé, Robert Tinga 651, 790, 833
Guillard, Bertrand 81
Guimarães, Luiz H. S. 312, 380
Guindo, Ando B. 14
Guindo, Boubacar 868
Gulinello, Maria 805

Gunes, Koray 148
Gunning, Robin 433
Gunsaru, Bornface 655
Guo, Jiagang 290
Gupta, Lalita 39, 243, 941, 1037
Gupta, Nimesh 617
Gupta, Raj K. 63
Gupta, Shaili 1045
Gupta, Vineet 410, 742
Gurarie, David E. 540
Gurary, Alexandra 23
Gurley, Emily 281, 933, 955, 1041
Gürtler, Ricardo E. 67, 392, 394
Guthmann, Jean-Paul 974, 1005
Gutiérrez, Lina A. 249
Gutman, Julie R. 422
Gutteridge, Clare E. 819
Guyer, Craig 926
Gwadz, Bob 1022
Gyang, Fredrick N. 195
Gyapong, John O. 386

H

Ha, Tran Thi Ngoc 456
Haake, David 98
Habbema, J D. F. 359, 676
Habomugisha, Peace 770
Hadi, Azam 514
Hadisoemarto, Panji F. 766
Haertle, Sonja 10
Haesler, Barbara 97
Hafy, Zen 766
Haidara, Fadima C. 384
Hailemariam, Afework T. 849, 891
Hall, Eric R. 750
Hall, Martin J. R. 79
Halpin, Kim 954
Halstead, Scott B. 767
Halvorsen, Jake G. 1040
Hamainza, Busiku 355, 539, 569
Hamarsheh, Omar Y. M. 864
Hamel, Mary 338, 339, 351, 546, 1036
Hamer, Davidson H. 535
Hammad, Ragaa E. 361
Hammond, Samantha 86
Han, Eun Taek 840
Hanafi, Hanafi A. 61, 64, 397, 401
Handunnetti, Shiroma M. 191
Hanelt, Ben 299, 1029
Hannah, Michele F. 555
Hanshoaworakul, Wanna 960
Hanson, Christopher 124
Hanson, Kevin 102
Hanssen, Eric 654
Happi, Christian T. 88, 404, 524, 527
Haque, Rashidul 636, 964, 966
Haralambou, George 77
Harker, Brent 874
Harn, Donald A. 1051

Harrell, Robert A. 240
Harrington, Laura C. 66, 265, 592
Harris, Eva 6, 25, 86, 110, 116, 117, 684
Harris, Jason B. 18
Harris, Juliana V. 189
Harrison, Lisa 628
Hartl, Daniel L. 368
Hartman, Barry 1045
Hartmann, Chris 992
Hartmann, Katherine 703
Hartmann, Wiebke 949
Hartwig, Carmony 1067
Harty, Ronald N. 611
Hashem, Mohamed 731
Hashimoto, Caryn 305
Haskell, Jacquelyn N. 631
Hassan, Hassan K. 880, 926
Hassan Sharifah, Syed 954
Hassanali, Ahmed 1026
Hastings, Ian M. 936
Hatabu, Toshimitsu 564
Hatch, Douglas 997
Hau, Tran P. 644
Hauer, M. C. 878
Havlir, Diane 705, 706
Hawela, Moonga 569
Hawkes, Clifton 379
Hawkes, Michael T. 920
Hawkins, Vivian N. 533
Hawley, William A. 736, 736
Hayakawa, Toshiyuki 564
Hayes, Curtis 115, 346, 444
Hayes, Daniel J. 497
Hayes, Edward B. 473
Haynes, J. D. 1015
Hazir, Tabish 678
Heady, Tiffany N. 656, 817
Hehl, Adrian 1076
Heiman, Donald F. 1045
Heintz, John 181
Heinz, Franz X. 687
Heinz, Michael 362
Helmers, Andrew 164
Helmy, Hanan 360, 361
Hemingway, Janet 621
Hemphill, Andrew 75, 376, 605, 963
Henipavirus Ecology Research Group (HERG) 954, 956
Henn, Matthew 25
Henry, Maud 818
Hensley, Lisa 992
Henson, Mike 473
Heppner, D. Gray 12, 44, 218, 578
Hermann, Pascal 1076
Hernandez, Carlos 645
Hernandez, Jean N. 727, 850
Hernandez, Roger 381
Hernández-Campos, Alicia 269, 270, 271, 273
Hernández-Campos, Maria A.
272

Hernández-Luis, Francisco 269,
270, 272, 273
Herrera, Flor 867
Herrera, Socrates 43
Herrera Camino, Andres 747
Herreros, Esperanza 826
Hess, Lindsey 653
Hesse, September 804
Hibberd, Patricia L. 609
Hickey, Patrick W. 445
Hidalgo-Martinez, Ana C. 465
Higazi, Tarig B. 363
Higgs, Stephen 613, 658, 730
Hightower, Allen 546, 587, 619
Higuita, Edwin A. 446
Hill, David 1045
Hillesland, Heidi 624
Himley, Stephen 55
Hinckley, Alison F. 473
Hinnebusch, B. J. 912
Hinrichs, Dave 822
Hira, Parsotam R. 79
Hirsch, Damien 517
Hisamori, Daisuke 484
Hiser, Ashley F. 56
Hittner, James B. 353, 694, 707, 1056
Ho, Walter 305
Hoang, Long T. 4
Hoang Le, Nguyen 644
Hocart, Simon J. 639
Hochbein, Roselyn 1043
Hodgson, Abraham 103
Hodson, Cheryl 655
Hoel, David 61, 64, 397, 401
Hoerauf, Achim 388, 389, 785
Hoffman, Marshall M. 819
Hoffman, R. L. 399
Hoffman, Stephen L. 216
Hoffmann, Erika H. E. 697
Hoke, Charles H. 102
Holder, Anthony 193
Hole, D G. 594
Hollingdale, Michael R. 158
Holloway, Brian 274
Holman, David 345
Holmes, Edward C. 616, 688
Holt, Deborah 433
Holt, Robert D. 959
Homira, Nusrat 281, 955
Homma, Akira 98
Hong, Sung-Jong 284
Hope, Andrew 129
Hopkins, Heidi 93, 340, 343
Horton, Ashley A. 242, 1024
Hospenthal, Duane 714, 715
Hossain, Jahangir 1041
Hossain, M. J. 281, 933, 955
Hotez, Peter 987
Hottel, Hannah 125
Hou, Min 70
Houde, Nathan 368
Hougard, Jean-Marc 230
House, Brent L. 217
House, Susan 242

Howell, Katherine 550
Howgate, James 464
Hsiao, Chia-Hung Christine 144
Hsu, Bing-Mu 921
Huallpa, C. 957
Huaman, A. 930
Huaman, Moises 19
Huang, Claire Y. 1, 114, 471
Huang, Ling 71
Huang, Mingbo 804
Huang, Shuhui 573
Huang, Yeufang 779
Huayanay, Leandro 381
Hubbard, Alan 51, 52, 328
Hübner, Marc P. 948
Huddler, Donald P. 656, 817
Huddleston, Beth 260
Hudson, Thomas H. 502, 656, 817
Hue, Nguyen D. 94
Huertas, Mariela 837
Huggel, Katja 333
Huggins, John 992
Hughes, Dyfrig A. 1003
Hughes, Mark T. 932
Hugo, Leon E. 979
Hui, George 305
Hulit, James 146
Humbel, Bruno 1069
Hume, Jen 226, 876
Hunja, Carol W. 578
Hunsperger, Elizabeth 472, 756
Hunt, Richard H. 591
Hunter, Gabrielle C. 749
Huong, Vu Ti Que 443, 456
Hurtado, Northan 725
Hurwitz, Ivy 624
Husain, Sohail 628
Hussain, Waqar 678
Hussaini, Isa 753
Hutchinson, Rob 594
Hutson, Christina L. 614
Huy, Rekol 26
Hyatt, Alex 954

1

ladarola, Michael J. 135
lamsirithaworn, Sopon 960
Ibadova, Gulnara A. 744
Ibarguen, Dario 837
Ibrahim, Mohamed 887
Ide, Charles 982
Idowu, Dare O. 524
Ilboudo-Sanogo, Edith 846
Ilett, Kenneth F. 501, 638, 1007
llika, Amobi L. 620
Imade, Godwin 692
Imrie, Allison 23
Intapan, Pewpan M. 428
Irawati, Dyah 681
Irfan, Seema 679
Iriko, Hideyuki 574
Isaacson, J. 519

Isaacson, Jeffrey D. 172
Ishengoma, Deus 842
Isoe, Jun 235, 236, 975, 976
Ito, Akira 72, 375
Itoh, Sonoyo 72, 375
Ittiprasert, Wannaporn 1033, 1049, 1050
Iwagami, Moritoshi 564
Iwuagwu, Francis O. 420
lya, Daniel 692
lyiola, Yemisi 404

J

Jacob, Benjamin 248
Jacobs Jr., William R. 505
Jacobus, David P. 173, 174, 505
Jacobus, Laura R. 173, 174
Jacquemot, Catherine 195
Jacquerioz, Frederique A. 186, 259
Jadav, Suresh 384
Jafari, Seyed M. 919
Jaffe, Donald R. 517
Jago, Jeffrey D. 501, 638
Jain, S. K. 222
Jain, Vidhan 194, 1055
Jairungsri, Aroonroong 2
Jamaluddin, Abdul Aziz 954
Jambou, Ronan 831
James, Mark 787
Jarilla, Blanca 70
Jarman, Richard G. 2, 113, 618,
760, 763, 765, 767
Jaron, Peter 15
Jarrett, Clayton O. 912
Jaworowski, Anthony 693
Jayakumar, Asha 670
Jayantasri, V. 666
Jeffery, Jason A. L. 644
Jei, Fei 142
Jennings, Cameron V. 1021
Jentes, Emily S. 186, 259
Jenwithisuk, Rachaneeporn 515
Jeronimo, Selma M. 313
Jerzak, Greta V. S. 661
Jiang, Daojun 777
Jiang, Ju 1065
Jiang, Lubin 488
Jiang, Lei 939
Jilma, Bernd 687
Jiménez, Elena 511
Jimenez, Juan 31
Jimenez, Victor 507
Jimenez, German 175
Jiménez-Díaz, Belén 512, 513
Jin, Lizhong 239
Jin, Ling 574
Jin, Xia 3, 457
Jin, Yamei 37
Jitpimolmard, Suthipun 428
Jiz, Mario 70, 335
Jobe, Ousman 319
Jochim, Ryan 391, 1039

Joel, Pradeep K. 1055
Johansson, Michael 108
John, Chandy C. 695, 814, 853
Johnson, Armead 425
Johnson, Barbara W. 128
Johnson, C. E. 278
Johnson, Dawn 177, 184
Johnson, Jacob D. 650, 656, 817, 820
Johnson, Jeff R. 370
Johnson, Karen 268
Johnson, Reed F. 611
Johnson, Stephanie T. 1044
Johnson, Wesley O. 584
Johnston, Dean 46
Johnston, Stephanie P. 810
Johnston-Gonzalez, Richard 886
Jones, Douglas 143
Jones, Douglas E. 142, 315
Jones, Franca 750
Jones, Jeffrey G. 411
Jones, Jeffrey L. 101, 134
Jones, Kate 995
Jones, LeeAnn 67
Jones, Lahna 650
Jones, Malcolm 308
Jones, Matthew J. 467
Jones, Tim F. 260
Jongsakul, Krisada 934
Jongwutiwes, Somchai 542, 545
Jonsson, Colleen 923, 929
Joos, Charlotte 214
Jorakate, Possawat 327, 329,
911, 915
Jordan, Stephen J. 847
Joshi, Durga M. 429
Joshi, Hema 202
Ju, Jung-Won 267
Juarez, Marisa 89
Juliano, Jonathan J. 811
Juma, Vera 676, 830
Juncansen, Camlia 697
Jung, Yoon-Jae 157

K

K'Ogal, Amos 707
Kaba, Stephen A. 45
Kabalo, Abel 355
Kabanywanyi, Abdunoor M.

633, 676, 830

Kabeya, Alain M. 476
Kabir, Mamun 966
Kabiru, Ephantus W. 1026
Kabyemela, Edward R. 322
Kachur, S. Patrick 21, 95, 342,
499, 529, 537, 633, 676, 830
Kaewpan, Anek 327, 915
Kafwani, Mzungu 153
Kagaayi, Joseph 96
Kahigwa, Elizeus 21
Kahn, Ashraful 18
Kahnberg, Pia 165
Kai, Oscar 1058

Kain, Kevin C. 164, 632, 799, 920, 1018
Kalanarooj, Siripen 763, 765
Kalanidhi, A. P. 114
Kalayanarooj, Siripen 453
Kale, Oladele 406, 407
Kalilani, Linda 519, 808, 1053
Kalinna, Bernd H. 1010
Kaltenböck, Astrid 122
Kalyango, Joan 93
Kam, Adele 682
Kamal, Michael 369
Kamal, Sherin A. 361
Kamanga, Aniset 896
Kambale, Wilson 340
Kamdem, Colince D. 1035
Kamgno, Joseph 776
Kamhawi, Shaden 64, 69, 395, 396, 397, 981, 1052
Kaminski, Robert 750
Kamugisha, Mathias L. 842
Kamya, Moses R. 93, 340, 675, 705, 706
Kanbara, Hiroji 789
Kande, Victor 481
Kane, Anne V. 609
Kaneko, Osamu 574
Kang, Mi-Ae 561
Kang, Young-A 538
Kang'a, Simon 850
Kango, Mabvuto 355
Kannady, Khadija 41, 227, 261, 845, 848, 851
Kano, Shigeyuki 208, 564
kanobana, Kirezi 33
Kaplan, Jenifer 277
Kaplan, Ray M. 988
Kappe, Stefan H. I. 319, 364
Kapre, Subash 384
Karagenc, Tülin 788
Karamagi, Charles 93
Karanja, Diana M. S. 307, 310, 336, 664
Karema, Corine 734
Karim, Coulibaly 710
Karim, Mohammad M. 609
Kariuki, Michael M. 490, 493, 798, 861
Kariuki, Simon 338, 339, 971
Kariuki, Tom 296
Karl, Stephan 809
Karnataki, Anuradha 647
Karnchaisri, Kriangkrai 542
Karunajeewa, Harin A. 181, 1007
Karyana, M 354, 544, 701
Kasper, Jacob M. 1013
Kastens, Will 358
Kasumba, Irene N. 873
Kasymbekova, Kalya 925
Katabarwa, Moses N. 770
Katebe, Cecelia 844
Katkowsky, Steven R. 464
Kaufusi, Pakieli H. 468
Kaur, Harparkash 499

Kauth, Christian W. 194
Kawai, Hiroyuki 55
Kawai, Vivian 786
Kawazu, Shin-ichiro 208
Kay, Brian H. 644, 979
Kayange, Noel 1003
Kaye, P. 1071
Kazura, James W. 358, 556, 695
Ke, Hangjun 859
Keating, Joseph 177, 184, 259, 560
Kebaier, Chahnaz 37, 156
Kebede, Asnakew 891
Keiser, Jennifer 376
Keita, Mahamadou M. 326, 382, 917
Keita, Mamadou M. 326, 508, 712, 740
Keita, Somita 409, 710
Kekitiinwa, Adeodata 705
Keller, Christopher 321, 549, 694, 1056
Keller, Thomas 692
Kelley, James 460
Kelly, Jane X. 655, 822
Kelly, Rosmarie 464
Kemisetti, Sumathi 902
Kenangalem, Enny 354, 486, 544, 701
Kendino, Gideon 187
Kengluecha, Ampornpan 515
Kennedy, Allison C. 355
Kent, Rebekah J. 250, 462, 879
Kerce, Jerry 464
Kern, Peter 375
Kerr, Caron 520
Khabiri, Alireza 474
Khalambaheti, Thareerat 863
Khalid, Nabila 79
Khan, Rasheda 281, 933
Khan, Tariq A. 902
Khan, Wasif A. 609
Khandelwal, N. 432
Khatib, Rashid A. 95, 529, 537
Khawar, Nadeem 678
Khieu, Virak 26
Khodiev, Aybek V. 744
Khusmith, Srisin 863
Kiang, Richard 185
Kiechel, Jean-René 506, 1006
Kifude, Carolyne M. 578
Kiggundu, Moses 706
Kihonda, Japhet 41
Killeen, Gerry 41, 95, 227, 261,
537, 672, 845, 848, 851
Kilpatrick, A. Marm 467, 657
Kim, Andrea 17
Kim, Chang-Hyun 1040
Kim, Hyo-Jin 567, 608
Kim, Jung-Yeon 267, 538
Kim, Jeong-Su 538
Kim, Tong Soo 267, 284, 538
Kim, Tae Im 284
Kim, Young-A 157
Kim, Yeon-Joo 538

Kimber, Michael J. 953
Kimmel, Rhonda 303
Kindermans, Jean-Marie 974
Kines, Kristine J. 289, 1010
King, Chwan-Chuen 105
King, Christopher L. 153, 296,
301, 551, 552, 803
King, Christopher 304
King, Christopher C. 159
King, Charles H. 461, 540, 699
King, C. R. 11, 48
King, Russell 583
King, Richter C. 581
Kinney, Richard M. 1, 114, 471, 660
Kinsey, J. 730
Kinyanjui, Sam 550
Kioko, Elizabeth N. 598
Kippes, Christopher 461
Kiprotich, Chelimo 557
Kiptui, Rebecca 546
Kirby, Matt 258
Kirchhoff, Louis V. 478
Kirsch, Philipp 68, 402, 585, 889
Kissinger, Patricia 473
Kiszewski, Anthony E. 891
Kitagawa, Beatriz Y. 997
Kitchen, Lynn W. 102
Kitron, Uriel 67, 392, 394, 1060
Kitua, Andrew Y. 843
Klade, Christoph 122, 687
Klein, Eili 532
Klein, Philipp 637
Klein, Pamela W. 555
Klein, Sabra 277, 555, 959
Klena, John 906
Kleshchenko, Yuliya 154, 648
Klimov, Alexander 681
Kline, Daniel L. 1025
Klinger, Elissa V. 1062
Klinger, Jeff 652
Klion, Amy D. 390, 952
Klungthong, Chonticha 765
Knapp, Jenny 377
Kneen, Rachel 1042
Knepper, Randall G. 599
Knight, Matty 1033, 1049, 1050
Knols, Bart G. 1024
Ko, Albert I. 98
Kobbe, Robin 637
Kochel, Tadeusz 115, 444, 928, 930, 957
Koekemoer, Lizette L. 591
Koenraadt, Constantianus J. M. 66, 592
Koita, Ousmane A. 508, 510, 639, 856
Kolb, Carol 737
Kole, Abhisake 952
Kolhe, Priti 464
Kollaritsch, Herwig 122
Komaki-Yasuda, Kanako 208
Komar, Nicholas 462
Komatsu, Natália T. 697
Komisar, Jack L. 1015

Konadu, Peter 389
Konate, Siaka 952
Kone, Abdoulaye K. 14, 1058
Kone, Cheick O. 1057
Kongsin, Sukhontha 28, 764
Konovalova, Svetlana 48
Koonce, Joseph 461
Koplowicz, Yelena B. 996
Koram, Kwadwo A. 103, 192, 211, 597
Korenromp, Eline 937
Korir, Cindy C. 806
Korir, Jackson C. 199
Korten, Simone 949
Koru, Ozgur 431, 810
Kosasih, Herman 681, 766
Kose, Sukran 900
Kosek, Margaret 541, 866
Kosmowski, Andrew 1008
Kosoy, Michael 330, 331, 908, 913
Kosoy, Olga L. 1043
Kotea, Navaratnam 690
Kotloff, Karen L. 326, 382, 740, 917
Kou, Zhihua 3
Koumare, Sekou 1057
Kouri, Drew 181, 540
Kourouma, Kerfallah 186, 259
Kowalewska-Grochowska, Kinga 815
Kowuour, Dickens 557
Krairojananan, Panadda 515
Kramer, Erin 315
Kramer, Laura D. 467, 657, 659, 661, 662
Krause, Darren R. 563
Krause, Peter J. 1045
Krautz-Peterson, Greice 333
Kreishman-Deitrick, Mara 656, 817
Kremer, Laurent 505
Kremsner, Peter G. 10, 523
Krishnegowda, Gowdahalli 1020
Krogstad, Donald J. 177, 508, 509, 510, 514, 560, 639, 839, 856
Krolewiecki, Alejandro J. 89
Kroon, Erna 991
Krudsood, Srivicha 519, 811, 1006
Krulak, David 415
Kruszon-Moran, Deanna 101, 134
Krzych, Urszula 319
Ksiazek, Thomas G. 281, 955
Kuan, Guillermina 86, 110, 684
Kucerova, Zuzana 147
Kuete, Thomas 717
Kuhn, Stephanie 473
Kuikumbi, Florent M. 476
Kulasekara, Bridget 49
Kulkarni, Manisha A. 245
Kulkarni, Prasad 384
Kum-Arb, Utaiwan 218

A-10

 Important Note: The number(s) following author name refers to the abstract number.Kumar, Anil 85
Kumar, Ashwani 673
Kumar, Nirbhay 40, 325, 1012
Kumar, Sanjay 85
Kumar, Sanjeev 39, 243, 941, 1037
Kumar, Sanjai 1017
Kumar, T. R. Santha 505
Kumar, Tripurari 742
Kumaran, Paul 666
Kumarapperuma, Sidath 923
Kumaraswami, V. 666
Kumwenda, Taida 938
Kun, Juergen F. J. 523
Kunert, John 1030
Kunz, Susan 975
Kuppers, Rudolf 1009
Kurane, Ichiro 107, 686
Kurtis, Jonathan 70, 322, 335
Kuschner, Robert A. 429
Kuser, Paula R. 570
Kutcher, Simon 644
Kuzera, Kristopher 264
Kwak, Dong-Hwan 157
Kweka, Eliningaya J. 57
Kwon, Joon-Wook 538
Kwon, Yong-Kuk 994
Kyle, Dennis E. 173, 174, 503
Kyle, Jennifer L. 6, 116

L

La Beaud, A. Desiree 461
Labo, Maria N. 995
Lacerda, Henio G. 313
Lachowitzer, Jeff 1054
Lackovic, Kurt 554
Lacma, Julio 884
LaCrue, Alexis N. 490, 493, 798, 861
Lad, Alpana 452
Ladd, Aliny B. L. 752
Ladd, Fernando V. L. 752
Lafontant, Christina 177, 184
LaForce, Marc 384
Lafuente, Maria-Jose 171
Lafuente, Sarah 8, 572
Laguna, V. A. 957
Lai, Ching-Juh 457
Laihad, Ferdinand J. 736
Lakwo, Tom 770
Lal, Altaf A. 971
Lal, Chandra S. 85
Lalloo, David G. 1003
Lama, Marcel 223
Lamb, Erika W. 293, 309
Lambert, Lynn 576
Lambert, Lynn E. 47
Lambson, Bronwen E. 247
Lameyre, Valerie 421, 716, 717
Lamikanra, Adebayo 741
Lammey, Jovitha 1007
Lammie, Patrick J. 890, 988
Lampah, Daniel 354, 486, 701

Lampman, Richard 1040
Lanar, David E. 45, 158, 218, 303, 863
Lanata, Claudia F. 903
Lancaster, Kathryn 266
Lanciotti, Robert S. 1043
Lander, Eric S. 162, 368, 369
Landis, Sarah 703
Laney, Sandra J. 1014
Lang, Jean 344, 443, 451, 454
Langdon, Gretchen 70
Langerveld, Anna 982
Langevin, Stanley A. 660
Langhorne, Jean 193
Lanteri, Charlotte 650
Lanzaro, Gregory C. 1024
Laoboonchai, Anintita 832
Laras, Kanti 104
Larasati, Wita 104
LaRocque, Regina 18
Larson, Bruce A. 339
Lascano, Mauricio S. 400
Laserson, Kayla 15, 338, 339, 351, 546
Lau, Audrey O. T. 603
Laufer, Miriam K. 530, 834, 969, 1053
Laughinghouse, Andre 1039
Laughlin, Larry 332
Laupert, Fernanda 997
Laurens, Matthew B. 834
Laveen, Janeen J. 1043
Law, Angela S. F. 501
Lawrence, Kendra 63
Lawson, Bernard 388
Lawyer, Phillip G. 318, 396
Laxminarayan, Ramanan 532
Lay, Jenny 438
Lazar, Lidia E. 724
Le, TL 207
Le Anh, Nguyen P. 644
Le Bras, Jacques 831
Le Roch, Karine 369
Leach, Amanda 8, 572, 578
Leary, Kevin 520
Lebowitz, Jacob 576
Lee, Byung-Chul 538
Lee, Clarence M. 149, 1049
Lee, Eng-Hong 212
Lee, G.T. 165
Lee, Jo Woon Yi 567
Lee, Jo Woon Yi 608
Lee, Jin-Ju 567, 608
Lee, John S. 598
Lee, Moses 36, 166
Lee, Patricia J. 656, 817
Lee, Rebecca 46
Lee, Sydney 276
Lee, Sunhee 805
Lee, Young-Hee 267
Leelaudomlipi, Surasak 515
Leepin, Angela 605
Legorreta-Herrera, Martha 188
Legros, Dominique 974

Lehmann, Tovi 226, 588, 876, 945, 1022
Lehner, Claudia 122
Leiby, David 196, 606, 1044
Leke, Rose Gana Fomban 425, 559
Leliwa-Sytek, Aleksandra 649
Lell, Bertand 10
Lelo, Baliyima 843
Lemiale, Laurence 216
Lemma, H. 718
Lemnge, Martha M. M. 842, 843
Lemos, Denise 291
Lengeler, Christian 337
Lenhart, Audrey 232
Lennon, Niall 25
Leon, Ilsa 1073
Leon, Renato 601
Leon, Walter 884
Leontsini, Elli 30
Lepec, Richard 725
Lerdthusnee, Kriangkrai 330
Lertora, Juan J. L. 514
Lesauvage, Eric 716
Lescano, Andres G. 19, 30, 104, 749, 903
Lescano, Willy 884
Lesho, Emil 395
Leszczynski, Sara 1037
Letson, William 768
Leung, Daniel 313
Leung, Lawrence W. 927
Levasseur, Kathryn 369
Levert, Keith 274
Levin, Michael 452
Levine, Gail L. 11
Levine, Myron M. 326, 740
Levy, Karen 51, 52, 328
Levy, Marc 995
Levy, Michael Z. 627, 786
Lewey, Jennifer 734
Lewis, Drew 517
Lewis, Dorothy E. 610
Lewis, Edwin E. 561
Lewis, Sheri 104
Lewockzo, Kenneth 260
Lewthwaite, Penelope 1042
Leyva, Rene T. 996
Li, Ben-Wen 777, 780
Li, Cong 882
Li, Chenglong 1002
Li, Qigui 167, 168, 169, 170
Li, Qianjun 923
Li, Robert S. 290
Li, Sheng 48
Li, Shunyu 284
Li, Wenjun 453
Li, Xioaming 920
Li, Xinshe 1011
Li, Yi-Shiuan 105
Li, Yuesheng 290
Li, Yu 991
Li, Yan B. 71
Li, Zheng Z. 71
Libiszowski, Paul C. 844

Libraty, Daniel H. 5
Libreros, Gerardo A. 759
Liebman, Katherine 655
Liepinsh, Dmitry 558
Lievens, Marc 8, 10, 572, 578
Lijek, Rebeccah S. 741
Liles, W C. 164, 799, 1018
Lilley, Ken 187
Lim, Chang k. 686
Lim, K.C. 292
Lim, Pharath 811
Lim, Phawath 831
Lima, Aldo A. M.. 745, 748, 752, 753
Lima, Danielle M. 757
Lima, Flavia L. 482
Lima, Jose B. Pereira. 882
Lima, Josane R. 313
Lima, Jose W. 479
Lima, Maria F. 154, 648
Limbach, Keith 11, 48, 304, 581
Limpawattana, Panita 428
Limsalakpetch, Amporn 218
Lin, A.J. 650
Lin, Enmoore 159, 181, 301, 1007
Lindsay, Steve W. 41, 227, 258,
594, 845, 848, 851
Linnen, Jeff 348
Linser, Paul J. 942
Linthicum, Kenneth J. 65, 262, 989
Liscum, Kathleen R. 610
Little, Mark P. 772
Liu, Chung-Ming 105
Liu, Canhui 363
Liu, Jun 920
Liu, Ping 5
Llamosas, Monica 29
Llanos, Alejandro 206
Llergo, Jose-Luis 171
Llinas, Manuel 1073
Loan, Huynh Thi Kim 456
Locke, Emily 48, 812
Logue, Christopher H. 993
Logvinenko, Tanya 18
Lok, James B. 984, 1011
Loker, Eric S. 285, 336
Lokida, Dewi 681
Lokomba, Victor 703
Lompo, Zourata 709, 709
Londono, Berlin 177, 560
Long, Carole A. 13, 47, 48, 213, 303, 803
Longacre, Shirley 214
Longstreth, J 519
Looareesuwan, Sornchai 506,
519, 811, 1004, 1006
Lopansri, Bert 486
Lopes, Maria Beatriz 753
Lopez, Eva 171
Lopez, Gaylord 59
Lopez, Victor 623, 930
Lopez-Lopez, Patricia 152
Lopez-Sanchez, Miriam 656, 817

Lopez-Vallejo, Fabian 271
Lord, Cynthia 121
Lorono-Pino, Maria Alba 465, 893
Loschen, Wayne 104
Lougué, Guekoun 833
Louie, Karen L. 659
Loukas, Alex 987
Lourenço, Elaine V. L.. 137
Lovegrove, Fiona E. 799, 1018
LoVerde, Philip T. 286, 291, 1032
Lovin, Diane 874
Lowery, Roy J. 490
Lozano, Sonia 511, 826
Lozano-Fuentes, Saul 892, 893
Lu, Jeff 367
Lu, Lydia 16
Lu, Liang 691
Lubaki, Jean-Pierre F. 476
Lubell, Yoel 343
Luby, Stephen P. 281, 933, 955, 1041
Lucas, Carmen 475, 526
Lucchi, Naomi W. 194
Lucena, Herene B. 748
Lucio-Forster, A. 399
Lucke, Andrew 165
Luckhart, Shirley 242, 249, 251, 561, 977
Lukeman, Ibrahim 637
Lukens, Amanda K. 162, 368
Lum, Lucy 28, 764
Lumsden, Joanne 319
Lun, Cheng-Man 299, 1029
Luna, Concepción 89
Lundstrom, Tammy S. 719
Lungu, Christopher 841
Luo, Haiyan 460
Luo, Yeung 460
Lusingu, John P. A. 842, 843
Lutumba, Pascal P. 481, 794
Luxemburger, Christine 349, 443, 451, 454
Lyimo, Thomas 21
Lyke, Kirsten E. 14, 216, 324, 1058
Lynch, Joseph 461
Lynch, Julia A. 445
Lyon, Jeffrey A. 12

M

Ma, Puo-Hua 921
MacArthur, John R. 633, 676, 830
MacCallum, Fiona J. 550
Macedo de Oliveira, Alexandre 338, 339, 972
Macete, Eusebio 8, 306, 572
Mach, Ondrej 16
Machado, Eleuza R. M.. 137
Machado, Paulo R. L. 380
Machado, Paula R. L. 931
Machado, Rosangela Z. 482

Macharia, Stephen 476
Maciel, Andressa A. F. L. 748
Maciel, Jorge 1012
Maciel, Jamilly G. 745
MacIntosh, Victor 415
Macintyre, Kate 184
Mack, B. M. 856
Mack, Douglas G. 316
Mackenstedt, Ute 372
Mackenzie, Charles D. 387, 774, 982
MacLeod, William B. 535, 678
Madebe, Rashidi 842
Madeira, Andreza 997
Madison, M. Nia 154, 648
Madrid, Teresa M. 299
Madyarov, Ruslan S. 744
Magill, Alan J. 173, 174, 357, 415, 650, 1008
Maguiña, Ciro P. 381
Maguire, Jason D. 76
Maguire, James H. 627, 786
Mahajan, Babita 1017
Mahajan, R C. 521
Mahande, Aneth M. 57
Mahanta, J. 521
Mahanty, Siddhartha 213, 952
Maharaj, Payal D. 660
Mahi, Sushil 432
Maillard, Stephan 377
Main, Andy J. 646
Maina, Geoffrey 336
Maiolatesi, Santina 581
Maire, Nicolas 671
Majam, Victoria 1017
Makarem, Mazen 293, 311
Makieya, Eric 794
Makkiya, Adil 91
Makoka, Mwai 916
Malafronte, Rosely S. 697
Malaivichitnond, Suchinda 545
Malaquias, Luiz Cosme C. 291
Malasit, Prida 2
Malecela, Ezekiel K. 842
Malecela, Mwele 774
Malenga, Grace 530
Malhotra, Indu 153, 803
Malick, Ndiaye 553
Malila, Aggrey 633
Malkin, Elissa 213, 812
Malla, Nancy 521
Mallik, Arun K. 789
Maloney, Susan 327, 329, 330, 908, 911, 915
Mamadou, Diallo A. 553
Mammen, Mammen P. 2, 429, 760, 763
Manaca, Maria N. 8, 9, 572
Manalo, Daria L. 70
Manchery, John 432
Mancini, Emiliano 871
Mand, Sabine 388, 389
Manda, Hortance 1026
Mandalakas, Anna M. 461
Mandalasi, Msano 334

Mandaliya, Kishor 803
Mandomando, Inacio 8, 9, 306, 572
Mangara, Salif 508
Mann, Victoria H. 289, 1010
Mannix, Frank 130
Manoukis, Nicholas C. 588, 868
Manrique, C. 957
Mansor, Sharif 506
Manuel, Karla R. 438
Manya, Ayub 546
Maqbool, Sajid 678
Mara, Valentina 995
Marathe, Chaitra 150
Marcet, Paula L. 67, 394
Marchena, Loyd 118
Marchetti, Elisa 384
Mare, Daouda 709
Marfo-Debrekyei, Yeboah 388, 389
Marfurt, Jutta 973
Margolis, Harold S. 26, 768
Mariani, Giuseppe 374
Marinho, Claudio R. F. 800
Markus, Miles B. 221
Marovich, Mary 317
Márquez-Navarro, Adrián 269
Marquino Quezada, Wilmer 972
Marra, Peter P. 467
Marrama, Laurence 214
Marron, Jennifer 347
Marrs, Carl 328
Marsh, Kevin 300, 550, 554, 1058
Marshall, Jonathon C. 872
Marshall, John M. 205
Marshall, Kristy 713
Martensson, A. 1005
Martin, Gregory J. 747
Martin, Laura B. 47, 213, 573, 576
Martin, Thibaud 230
Martinez, Idali 472
Martins, Daniella R. 313
Martins, Lívia C. 123, 131
Martins, Maria P. S.. 1047
Martins-Filho, Olindo A. 291
Martinson, Jeremy 321, 548
Marty, Francisco 1045
Marzouk, Mahmoud M. 79
Masanja, Irene 342, 499
Mason, Carl J. 744
Mason, Peter W. 658
Masood, Tahir 678
Massey, Holman C. 984
Massougbodji, Achille 651
Masunge, Japhter 16, 17
Masuoka, Penny 332
Maswi, Charles 676, 830
Mather, Michael W. 855, 857, 858, 859
Mather, Thomas N. 1061
Mathieu, Els 720
Mathisen, Glenn E. 478
Matos, David 738

Matson, Ryan 541, 866
Matsuda, Shusaku 484
Matsumoto, Kotaro 901
Matsunaga, James 98
Matthys, Barbara 729
Matuschewski, Kai 319
May, Jürgen 637
May, Karen 803
Mayor, Alfredo 306
Mazitschek, Ralph 652, 821
Mazumdar, Suman 222
Mbacham, Wilfred 635
Mbewe, Bernard 808
Mbogo, Charles M. 248
Mboup, Soulyemane 162, 368,
369, 935, 1021
McArthur, Julie H. 347
McAvin, James 444
McBride, Alan J. A. 98
McBride, Flavia W. C. 98
McCall, Philip 232
McCall, Suzanne 714
McCalla, Carlo 1045
McCallum, Fiona J. 300, 551
McCalmont, William F. 650, 656, 817
McCann, James 891
McCarthy, Anne E. 427
McCarthy, James 433
McCarthy, Sarah E. 611
McCasland, Michael 12, 219
McClellan, Holly A. 573
McCollum, Andrea M. 971, 972
McComas, Katherine 66
McConnell, William 517
McCutchan, Thomas 1017
McDowell, Mary Ann 64, 395, 397, 670
McElroy, Peter 21
McGarvey, Stephen T. 70
McGee, Charles E. 613, 658
McGrath, Andrew 48
McGrath, Shannon M. 44
McKelvey, Robin 624
McKerrow, James H. 292
McLain, James D. 618
McLaughlin, John R. 68, 402, 585
McLeod, John 461
McManus, Donald P. 71, 290, 1051
McMorrow, Meredith 342
McNeil, Yvette 486
McRae, Scott 473
Mduluza, Takafira 325
Mead, Daniel 464
Mease, Ryan 12, 215
Medeiros, Marco 98
Medina, Deysi 1046
Medina, Sarimar 47
Medina-Franco, José L. 271
Medlin, Carol A. 737
Meeks, Janet 23
Meheus, Filip 481, 794
Melby, Peter C. 739

Melrose, Wayne 268, 713, 771
Membi, Christopher D. 163
Mendenhall, Ian 886
Méndez, Fabián 759
Mendez, Juan 480
Mendez-Cuesta, Carlos A. 273
Mendoza, Alfonso 171, 505
Mendoza-Silveiras, José 11, 216, 304, 581
Menéndez, Clara 306
Menezes, Anisha 235
Menezes, Cristiane A. S.. 316
Menezes, José A. S. 997
Meng, Zhaojing 665
Menge, David M. 814, 853
Mensah, Nathan 103
Menten, Joris 937
Mentink-Kane, Margaret M. 667
Meola, Mark A. 662
Meola, Mark M. 657
Mercado, Xiomara 472
Merino, Emilio F. 850
Meroni, Valeria 72
Mesesan, Kyeen 1
Meshnick, Steven R. 228, 519, 693, 703, 808, 811, 816
Mesirov, Jill 369
Messerli, Shanta M. 288
Mesu, Victor K. Betu. Ku. 476
Metenou, Simon 425, 952
Metta, Emmy O. 21, 529
Mettens, Pascal 44, 218
Metwally, Mohamed 731
Meya'a, Abanda 722
Meyer, Andrew M. 888
Meymandi, Sheba K. 478
Meza, Rina 750
Meza, Yocelinda 750
Mharakurwa, Sungano 229, 569, 677, 838, 896, 938
Miaka, Constantin 481
Michaels, Sarah 1034
Michon, Pascal 159, 301, 551, 809
Middeldorp, Jaap M. 303
Midzi, Nicholas 325
Miesfeld, Roger L. 234, 235, 236, 975, 976
Miguel, Ihosvani 813
Mikhail, Nabiel 731
Miles, K. 207
Milhous, Wilbur K. 173, 174, 357, 415, 503, 524, 527, 650, 1009
Militello, Kevin T. 1013
Milkowski, Anna 602
Miller, André 1033, 1049, 1050
Miller, Barry R. 1
Miller, David 992
Miller, John M. 543, 674, 841, 844
Miller, Kathryn 266
Miller, Louis H. 13, 47, 213, 488, 573, 576
Miller, Mark 383

Miller, Nathan J. 1061
Miller, Robert 735
Miller, R. Scott 1009
Miller, Scott 863
Millman, Jessica 8, 9, 572
Mills, Anne 343, 936
Mills, Lisa A. 96
Milner, Dan A. 162, 204, 368,
1021, 1053
Mimori, Tutsuyuki 89
Minta, Anna 180
Mintwo, Alain F. 476
Mintz, Eric 15
Miranda, Maria Consuelo 797
Miri, Emmanuel S. 422
Mis-Avila, Pedro 893
Misher, Lynda 49
Misiani, E. A. 591
Mitamura, Toshihide 564
Mitova, Rumiana 373
Mitre, Edward 775, 948
Mitreva, Makedonka 362, 779, 985
Miura, Kazutoyo 13, 213
Mkoji, Gerald M. 336
Mkulama, Mtawa 229, 838, 938
Mlambo, Godfree 1012
Mmbando, Bruno P. 842, 843
Mobedi, I. 399
Moch, J K. 1015
Moguel, Barbara 403
Mohamady, Hanan I. 906
Mohamed, Abdirahaman 543
Mohamed, Ahmed 619
Mohamed, Abdirahman 674, 844
Mohammed, Hamish 348
Mohareb, Emad 925
Mohmmed, Asif 222, 566
Molaei, Goudarz 257, 602
Molina, Margarita 903
Molina-Cruz, Alvaro 243, 1037
Molta, Norman 692
Molyneux, Malcolm E. 530, 693, 1003
Moncayo, Abelardo C. 260
Mondal, Dinesh 964, 966
Mondo, Mireille 466, 689
Monroy, Carlota 403
Monroy-Nicola, Jorge 400
Montero-Solis, Ciro 852
Montes, Martin 986
Montes-Jave, Cecilia 884
Monteville, Marshall 925
Montgomery, Joel 955
Montgomery, Jacqui 1003
Montgomery, J. M. 930, 957
Montgomery, Phil 368
MonThavy, Chea 82
Montoya, Manuel 332
Montoya, Romeo H. 28, 764
Moody, Erin 260
Moonga, Hawela 539
Moore, Aubrey 402, 585
Moore, Brioni R. 501, 638

Moore, Chester G. 888
Moore, Lee R. 809
Moormann, Ann M. 303, 556, 557
Mootha, Vamsi 489
Mor, Siobhan M. 426
Moraes-Ávila, Sandra L. 697
Morales, Maria E. 289, 1010
Moran, Manuel 19, 683
Moran, Marjorie 433
Morazzani, Elaine 643
Moreau, Jean Charle 553
Moreno, Elizabeth C. 291
Mores, Christopher N. 125, 470, 582
Moretz, Samuel E. 13, 47, 48
Morgan, Daniel J. 380
Morgan, Rachel 1002
Morgan, William 288
Morin, Laura-Lee L. 662
Moris, Philippe 9
Morris, D. 519
Morrisey, Joanne M. 365, 857, 858, 859
Morrison, Amy 623
Morrison, A. C. 930
Morrison, Dennis 344
Morsy, Zakariya S. 361
Morton, James 975
Morway, Christina 330, 331, 908
Mosher, Aryc 700, 849
Mosnier, Joel 818
Mota, Maria M. 1019
Mott, Robert 1008
Mott, Tiffany M. 561
Motter, Christi 996
Moudy, Robin M. 657, 662
Moulds, Joann M. 1058
Moulton, Lawrence H. 30
Mowlavi, G. R. 399
Moyano, Luz Maria 31
Mpimbaza, Arthur 352
Mpoto, Alfred M. 476
Mridha, Liz 517
Msangeni, Hamisi A. 842
Mshinda, Hassan 261, 676, 848, 851
Msiska, Charles 355
Mtasiwa, Deo 41, 227, 261, 845, 848, 851
Mu, Jianbing 209, 1039
Mubi, Marycelina 163
Muchiri, Eric M. 153, 699
Mucker, Eric 992
Muehlenbachs, Atis 1054
Mueke, Jones M. 595
Mueller, Ivo 159, 181, 301, 550,
551, 552, 809, 1007
Mueller, Norbert 963
Mugyenyi, Cleopatra K. 300, 554
Mukabana, Richard 401
Mukaka, Mavuto 1003
Mukbel, Rami M. 64, 142, 143, 395, 397
Mukherjee, Shankar 146

Mukherjee, Sudeshna 260
Mukuka, Chilandu 543, 674, 841
Mulenga, Musapa 229, 938
Mulet, Teresa 512, 513
Mullen, Gregory E. 13, 47, 213, 576
Muller, Claude P. 682
Müller, Ivo 973
Muller, Michaela 1068
Müller, Pie 865
Müller-Myhsok, Bertram 785
Munayco, Cesar V. 104, 728
Mundaca, Cecilia 104
Mundaca, Carmen C. 19, 683, 728
Mungai, Peter 153
Mungai, Peter L. 699
Muniz, Andre Luiz A. 283
Muniz, Pascoal T. 697
Muñoz, Jorge 348
Muñoz, Maria de L. 106
Muñoz-Jordán, Jorge 112, 754
Munungi, Auguy K. 476
Muok, Erick M. O. 310
Murcia, Luz Mila 837
Murphy, Brian R. 124, 347
Murphy, Jittawadee 330
Murphy, Jennifer L. 56
Murray, Clinton K. 429, 714, 715
Murray, H, W. 378
Murtaza, Asifa 678
Musa, Dankyau 494
Musafiri, Placide 734
Musie, Edgar M. 922
Muskus, Carlos 249
Musset, Lise 940
Musuamba, Gertrude 228
Mut-Martin, Mirza 151
Mutabingwa, Theonest K. 322, 1054
Mutai, Beth K. 1016
Mutuku, Francis 587, 595, 1036
Mutumanje, Elissa A. 434, 436
Muturi, Ephantus J. 248
Muvdi, Sandra H. 84
Mwakitalu, Esther 774
Mwangangi, Joseph M. 248
Mwangoka, Grace W. A. 176
Mwanza, Mercy 841
Mwapasa, Victor 693
Mwinzi, Pauline
Mwinzi, Pauline N. M. 307, 310, 664
Myatt, Mark 722
Myers, Jocelyn Celeste 1033,
1049, 1050
Myint, Khin S. A. 113, 429
Myles, Kevin M. 643
Mzayek, Fawaz 510, 514, 639

N'Goran, Eliézer K. 729
N'Guessan, Raphael 230

Na, Byung-Kook 267
Na Ayuttaya, Tippawan T. 618
Naddaf, S. R. 399
Naemkhunthot, Sirirat 107
Nagajyothi, Fnu 146
Nagao, Yoshiro 111
Nagpal, Avinash C. 194, 1055
Naguleswaran, Arunasalam 75
Nahar, Kamrun 281
Nahar, Nazmun 933
Najafi, N. 399
Najera-Vazquez, Maria del Rosario 893
Nakao, Minoru 72, 375
Nakhla, Isabelle 906
Nakhlla, Isabelle 905
Nakielny, Sara F. 995
Nam, Vu S. 644
Nanda, Nutan 183
Naniche, Denise 9
Nankabirwa, Joaniter I. 93
Naorat, Sathapana 327, 911
Naranjo, Nelson 249
Narayan, Rupa 631
Nardin, Elizabeth 46
Nartey, Helena 192
Narum, David L. 49, 213, 576
Nascimento, Eliana L. 313
Nascimento, Marcia C. 283
Nascimento, Renata T. 120
Nash, Lisa 651
Nash, Oyekanmi 994
Nathan, Michael B. 350
Natividad, Filipinas 119
Navaratnam, Vis 506, 1006
Navarrete, Joel 106
Navas, Adriana 797
Ndao, Momar 815
Nde, Pius N. 154, 648
Ndeezi, Grace 352, 426
Ndhlovu, Micky 355
Ndiaye, Daouda 162, 204, 368,
369, 489, 935
Ndiaye, Hawa 710
Ndiaye, Jean-Louis 717
Ndiaye, Magueye 689
Ndikuyeze, Georges 1037
Ndip, Lucy M. 1064
Ndir, Omar 162, 369, 935, 1021
Ndububa, Dennis 651
Ndugu, Ibrahim 336
Neafsey, Daniel E. 162, 368, 579
Nébié, Issa 846
Nechmireva, Tamara S. 744
Neil, Donald A. 415
Neira, Marco 601
Nelson, Kara 51, 52
Nene, Vish M. 1033, 1050
Neres, Rita 800
Nerome, Reiko 686
Nerurkar, Pratibha V. 460
Nerurkar, Vivek R. 460, 468, 958
Neto, Armando M. 225
Nettel-Cruz, Jose A. 852
Neuhaus, Ellen 1045

Neva, Franklin A. 135
Nevin, Remington 438
Newland, Joseph 47
Ng'ang'a, Z. 549
Ng'habi, Kija R. 1024
Ngajilo, Aggrey 633
Ngan, Chantha 26
Ngasala, Billy 163
Ngoa, Nguyen D. 94
Ngoenwiwatkul, Yaowaluk 924
Ngondi, Jeremiah 700, 849
Ngudiankama, Barbara F. 240
Nguku, Patrick 619
Nguon, Chea 83
Nguyen, Andrew 507
Nguyen, H.P. 207
Nguyen, Megan 196
Nguyen, N.Q. 207
Nguyen, Ngoc Rang 451
Nguyen, Q.H. 207
Nguyen, Thi Kim Tien 451, 454
Nguyen, Trong Toan 451, 454
Nguyen, Vu 576
Nguyen Than, Ha Quyen 22
Nguyen Thanh, Hung 22
Nguyen Thi, Phuong Dung 22
Ngwa, Alfred A. 210
Nhampossa, Tacilta 306
Nicoll, William S. 158
Nieberg, Paul H. 478
Nielsen, Carrie 459
Niezgoda, M. 957
Nikiema, Jean Baptiste 709
Nikolajczyk, Barbara 664
Niles, Edward G. 1032
Nimmannitya, Suchitra 453
Nimmo, Graeme 268
Nisalak, Ananda 2, 113, 453,
760, 763, 765, 767
Nitayapan, Sorachai 618
Nithyanandan, Nagercoil 520
Njama-Meya, Denise 675
Njau, Joseph D. 633
Njenga, Kariuki 619
Njikap, Adelaide 722
Nkrumah, Louis J. 505
Nku Imbie, David 228
Noedl, Harald 636, 832, 934
Nofchissey, Robert A. 129, 663
Nogbou, Messoum 496
Nogueda-Torres, Benjamina 269
Noisakran, Sansanee 2
Noor, Abdisalan 546, 546
Norris, Douglas E. 229, 250, 591,
879, 896, 938, 959
Norris, Laura C. 879
Nosten, François 1005
Notsch, John 650
Nour El-Din, El-Shaimaa M. 61
Novak, Robert J. 246, 248, 252, 1040
Novelli, Enrico M. 353
Nuchprayoon, Surang 784
Nuernberg, Peter 388
Nukui, Yoko 686

Nunes, Márcio R. T. 123, 131, 755
Nuñez, Andrea 25, 110
Nunez, Gladys 747
Nurhayati 766
Nutman, Thomas B. 135, 390,
665, 666, 667, 950, 952
Nwagwu, Mark 193
Nwakanma, Davis 197, 210, 812
Nwankwo, Lucky 147
Nwigwe, Ugonna F. 420
Nwoke, Betram E. B. 100, 413
Nwuba, Roseangela I. 193
Nwugba, Rose-Angela 524
Nyaguara, Amek 15
Nyakoe, Nancy K. 323
Nyame, Anthony K. 334
Nyika, Dickson 261
Nzarubara, Bridget 675
Nzila, Alexis M. 827, 828
0
O'Brochta, David A. 240, 945,
946
O'Connor, Linda-Lou 875
O'Guinn, Monica L. 598
O'Leary, Dan 473
O'Neal, Seth 380
O'Neil, Michael T. 187
O'Neill, Scott L. 979
O'Reilly, Ciara E. 15
O'Reilly, Michael 960
O'Riordan, S.P. 207
Oakley, Miranda 1017
Oaks, Edwin 750
Obadofin, Michael 692
Obara, Marcos T. 997
Obaro, Stephen 20, 353
Obeng-Adjei, George 195, 198
Ocampo, Clara 886
Ocaña-Mayorga, Sofia 400
Ochieng, Benjamin 15
Ockenhouse, Christian F. 219
Ocran, Anastasia R. 190
Odaibo, Alexander B. 155, 193, 547
Odunga, Oscar Amos 20, 353
Oduola, Ayoade M. J. 524, 527
Oduro, Abraham 103
Offianan, Toure A. 496
Ofori, Michael 192
Oguche, Stephen 651
Ogutu, Bernhards 12, 219, 735
Ohrt, Colin 173, 174, 357, 520, 650
Oishi, Kazunori 119
Ojurongbe, Olusola 523
Okafor, Christian M. F. 193
Okatcha, Tunika I. 839
Okebe, Joseph 197, 210
Okeke, Iruka N. 741
Okoko, Brown 384
Okyay, Pinar 788

Oladepo, Oladimeji 406
Olayemi, Oladapo 179
Oleinikov, Andrew V. 580
Oliveira, Bruna B. 752
Oliveira, Fabiano 395
Oliveira, Francisco M. B. 1032
Oliveira, Guilherme 286
Oliveira, Luiz F. 69, 396, 1039, 1052
Oliveira, Tricia M. 482
Olivier, Martin 977
Olley, Benjamin 404
Olliaro, Piero L. 378, 497, 506,
634, 968, 1005
Olorunsogo, Olufunsho O. 524
Olsen, Sonja 329
Olsen-Rasmussen, Melissa 991
Olson, Carol A. 476, 519, 811
Olson, Kenneth E. 231, 279, 441, 455, 641, 993, 1038
Olson, Victoria A. 614
Oluwagbenga, Ogunfowokan P. 494

Olveda, Remigio 335
Omar, O. A. 619
Omar, Thiaw 553
Omariba, Duke 735
Ombok, Maurice 587
Omer, Rihab A. O. 372
Omondi, Amos K'Ogal 353
Omosun, Yusuf O. 193
Onagan, Mario 708
Ong, Sivuth 26
Ong'echa, John Michael 20, 200,
321, 353, 548, 549, 694, 707,
1056
Onwuliri, Celestine O. E. 100, 413
Onyona, Phillip 338
Ooi, Mong How 1042
Opoka, Robert O. 695
Opondo, Dorothy 321
Orago, Alloys 20, 200, 321, 557
Oramasionwu, Gloria E. 178
Orengo, Jamie M. 649
Oria, Reinaldo B. 745, 748, 752, 753
Orlandi-Pradines, Eve 238
Oronsaye, Francis 910
Ortega, Oscar 86, 110, 684
Ortiz, Gloria M. 54
Osborne, John 274
Ose, Kenji 1027, 1035
Osei-Atweneboana, Mike Y. 386
Osinubi, Omowunmi Y. O. 99
Osman, Ahmed 1032
Osman, Rashid 619
Osorio, Jorge E. 114, 446, 471
Osorio, Lyda 837
Ospina, Marta C. 446, 758
Ostera, Graciela R. 487
Oswald, William E. 749, 903
Othoro, Caroline 46
Otieno, Kephas 338

Otieno, Michael 20, 200, 321, 557
Otieno, Richard 20, 200, 321, 353, 548, 549, 694, 707, 1056
Otieno, Walter 735
Otsuki, Hitoshi 208, 575
Ou, Ruguang 493, 798, 861
Ouattara, Amed 14
Ouedraogo, André Lin 846
Ouedraogo, Jean-Bosco 423, 424, 682, 709, 833, 835
Ouma, Collins 20, 200, 321, 353, 548, 549, 694, 707, 1056
Ouma, Peter 338, 339, 351
Ouma, Yamo 20, 549, 694, 707, 1056
Ovleda, Remigio M. 70
Owen, Robert 929
Owiredu, Williams K. B. A. 596
Owusu-Agyei, Seth 651, 726
Owusu-Ofori, Ruth 726
Oyakhiromen, Sunny 10
Özbel, Yusuf 61, 148, 788, 791

P

Pablo, Archie O. 70
Pachas, Paul E. 738, 898, 1046
Pacheco, Maria A. 860
Pacheco, Robinson 797
Padierna-Mota, Cecilia 269
Padilla, Carlos 738
Padilla, Gabriel 713
Padilla-Raygoza, Nicolas 787
Paessler, Slodovan 928
Page-Sharp, Madhu 1007
Pagés, Frederic 238
Paik, Ik-Hyeon 653
Painter, Heather J. 365, 858, 859
Pal, Subhamoy 444
Palacios, Ricardo 43
Palma, Patricia V. B. 757
Palmer, Dupeh R. 445
Palys, Tom J. 102
Pam, Sunday 692
Pandey, Basu D. 789
Pandey, Krishna 85
Pandey, Kishor 789
Panella, Amanda J. 1043
Pantenburg, Birte 610
Papadopoulou, Barbara 1068
Pape, W. J. 888
Parashar, Umesh 439
Pardo, Edwin H. 759
Paredes, Maribel 541
Parekh, Falgunee 216
Parida, Manmohan 617
Park, Daniel J. 162, 204, 579, 368
Park, Jae-Won 157
Park, Mi-Hyun 267, 538
Parker, William 923
Parmakelis, Aristeidis 872
Parmenter, Cheryl 958
Parra, Beatriz 759

Parra, Johanna A. 43
Parsons, Michele 15
Parsons, Marilyn 647
Parulekar, Varsha 384
Pasay, Cielo J. 433
Pascual, Mercedes 999
Passara, F. 957
Passos, Sara 380
Pastor, Giovanna 750
Patarakul, Kanitha 784
Patel, Jigar J. 854, 939
Patel, Nikki 995
Patel, Samir N. 632, 799, 1018
Patel, Vishal 652, 824, 1013
Patra, Kailash P. 370
Patrican, Lisa A. 601
Patterson, J. L. 278
Patterson, Noelle B. 11, 48, 304, 581
Pau, Maria Grazia 44
Paulke-Korinek, Maria 122
Pearce, Edward J. 1010
Pearson, Mark S. 987
Pearson, Richard D. 313, 479
Pecor, James 598
Peel, Bethany A. 140
Pelleau, Stephane 831
Pelly, Tom 680
Penali, Louis K. 496, 651
Penha-Gonçalves, Carlos 800, 1019
Penhoat, Kristell 238
Pennington, James E. 234, 975, 976
Peou, Sok 934
Pérez, Gerardo 106
Perez, Juan 750, 884
Pérez, Ligia del Pilar 837
Pérez, Pilar 837
Pérez-Guerra, Carmen 109, 458
Pergam, Steven 663
Perkins, Douglas 20, 200, 321, 353, 548, 549, 694, 707, 1056
Perng, Guey 2
Perraut, Ronald 81, 214
Persson, Kristina E. M. 300, 550
Peruski, Leonard 327, 329, 330,
331, 908, 911, 915
Pesanti, Ed 1045
Pesce, John T. 309
Pesko, Kendra 121, 582
Peters, Jennifer M. 563
Petersen, Carolyn 10
Petersen, Christine A. 142, 143, 315
Petersen, Kimberly S. 653
Petersen, Lyle 348
Peterson, Ingrid 698
Peterson, Kristine 964
Peterson, Stefan 93
Peto, T.E. 207
Petri, William A. 964, 966
Petritus, Patricia M. 320
Pettifor, Audrey E. 228
Peyer, Martina 1076

Peyton, David H. 655
Pfarr, Kenneth 388, 389, 785
Pfeffer, Martin 463
Phillips, Rebecca 1071
Phoolchareon, Wiput 924
Phuc, Ha Van 456
Piacentini, Mauro 158
Piarroux, Renaud 377
Piccinali, Romina V. 394
Pichyangkul, Sathit 218
Pickering, Darren 987
Picot, Stéphane 968, 973
Pierre, Dorny 33
Piesman, Joseph 1060
Pilakasiri, Chaiyaphruk 783
Pilakasiri, Kajee 783
Pilotte, Nils 781
Pimentel, Guillermo 715
Pineda, Sandy 403
Pinedo-Cancino, Viviana V. 786
Pinel, J. 511
Piola, Patrice 1004
Pion, Sébastien D. 773, 776
Piper, Samantha N. 362, 778
Piriou, Erwan 303
Piscoya, Luis 31
Pitmang, Simon 651
Pitzer, Kevin 503
Plakson, Nicole 643
Pletnev, Alexander 124
Pletnikov, Mikhail 277
Plikaytis, Brian 384
Plouffe, David 369
Plowe, Christopher V. 14, 324,
421, 492, 530, 834, 969, 1053, 1058
Pochet, Nathalie 369
Poddar, Goutam 281
Pohlig, Gabriele 476
Polhemus, Mark 735
Polhemus, Mark E. 578
Pollack, Richard J. 244, 891
Polley, Spencer 302
Pollissard, Laurence 451
Polson, Hannah E. 214
Pompeu, Margarida M. 479
Ponce, Carlos 787
Ponce, Daphne 683
Ponce, Elisa 787
Pond-Tor, Sunthorn 335
Pongponratn, Emsri 604
Pongsiri, Montira 721
Pongsuwanna, Yoawapa 960
Pongtavornpinyo, Wirichada 936
Ponmee, Napawan 939
Ponnusamy, Loganathan 589
Poo, Jorge Luis 344
Porcella, Steve 964
Porta, Hirva 569
Porten, Klaudia 722
Porter, Kevin 115, 345, 346, 444
Porto, Aurelia F. 283
Portocarrero, Milagrytos 33
Posner, Gary H. 653, 1067

Potts, James A. 453
Poudiougo, Belco 712
Poulakakis, Nikolaos 872
Povoa, Marinete M. 882
Powell, Jeffrey R. 872
Powell, Michael 804
Powers, Ann M. 993
Pradel, Gabriele 36
Pradhan, Anupam 862
Pradines, Bruno 238, 818
Prager, Martín 797
Prajapati, Surendra K. 202
Prapasiri, Prabda 327, 924
Preaud, Jean-Marie 384
Premaratne, Prasad H. 191
Premji, Zul 163, 651, 1021
Presber, Wolfgang 864
Prestwood, Tyler R. 7
Preziosi, Marie-Pierre 384
Pri-Tal, Benjamin M. 944
Price, R N. 354, 486, 544, 701
Prichard, Roger K. 133, 386, 776
Pridjian, Gabriella 473
Prigge, Sean T. 367, 656, 817
Prigozhin, Daniil M. 7
Proano, Roberto 387
Proctor, Melanie C. 606, 1044
Prue Marma, Aung Swe 636
Pruett, Khadeeja 520
Puerto, Fernando I. 465
Pulliam, Juliet R. C. 956
Purcell, Lisa A. 36, 166
Purcell, Robert H. 959
Purfield, Anne E. 816
Pusic, Kae 305
Pusnik, Mascha 1070
Putaporntip, Chaturong 542,
545
Puthawathana, Pilaipan 960
Putnak, Robert 346
Putnam, Shannon 681
Puyol, Laura 306
Pybus, Oliver G. 616, 688

Q

Qadri, Firdausi 18
Qazi, Shamim A. 678
Qi, Yumin 871
Qian, Feng 576
Quaresma, Juarez A. S. 123, 131
Quashie, Neils B. 516
Queiroz, Jose W. 313
Queiroz, Nina M. Gual. Pimenta de. 482
Queiroz, Telma B. S.
Queiroz, Telma B. S. 479, 1047
Quelal, Claudia 837
Quelhas, Diana 306
Quinn, Matthew 3
Quinn, Thomas C. 96
Quinnell, Rupert 792
Quino, A. H. 416
Quiñones, Luz 112

Quinonez, Javier 403
Quintó, Llorenç 306
Quiroz, Evelia 118
Quispe, Jose 19
Quispe-Machaca, Victor 627
Qvarnstrom, Yvonne 810

R

Rachaphaew, Nattawan 515
Rada, Liliana 796
Raghavan, D. 90
Raghavan, Nithya 1049
Rahman, Mahmudur 281, 955
Rai, M. 378
Raj, Dipak K. 562
Rajan, Latha 733
Rajapandi, Thavamani 209
Rajatileka, Shavanthi 232
Ramalho-Ortigao, Marcelo 64, 395, 397
Ramanathan, Roshan 135
Ramanathan, Suresh 506, 1006
Ramboer, Isabelle 10
Ramer-Tait, Amanda 315
Ramey, Kiantra I. 147, 804
Ramhalo-Ortigao, Marcelo 670
Ramirez, Jhon 623
Ramirez, Jose L. 640
Ramírez, Luis R. 106
Ramirez, Ruth E. 758
Ramírez-Sierra, Maria J. 151, 152
Ramos, Celso 465
Ramos, Daphne D. 30
Ramos, Mary M. 112
Ramos, Simone G. R.. 137
Ramos-Avila, Adriana 188
Ramsey, Janine M 996, 1038
Ramzan, Afroze 678
Ramzy, Reda M. R. 360, 361, 1014
Rana, Saleem M. -. 522
Randeniya, Preethi V. 191
Randrianarivelojosia, Milijoana 717
Randrianasolo, Laurence 717
Ranford-Cartwright, Lisa 516
Rangel-Castilla, Leonardo 32
Ranson, Hilary 232, 865
Rao, P.V. Lakshmana 617
Rao, Ramakrishna U. 777, 779
Rasgon, Jason L. 870, 878, 980
Rasmussen, Sonja 473
Rath, Bruno 627
Rathod, Pradip K. 939
Ratsimbasoa, Arsene 717
Raviprakash, Kanakatte 115, 345
Raymond, JoLynne 992
Rayner, Julian C. 163, 847
Raza, Ahmed 1058
Razuri, Hugo R. 332
Rea, J 1001
Read, Amber L. 624
Recuenco, S. 957

Reddy, Heather L. 606
Reed, Steven G. 141
Reeder, John C. 159, 973
Reese, Paul B. 132
Reeve, David 771
Regev, Aviv 369
Regis, David R. 11, 216, 304, 581
Regnery, Russell L. 614, 991
Reiling, Linda 300, 550
Reilly, Heather B. 160
Reinbold, Drew D. 820
Reis, Mitermayer G. 98
Reisen, William K. 459, 584, 601
Reiskind, Michael H. 582
Reist, Martin 97
Reiter, Karine 576
Remarque, Ed 192
Remich, Shon A. 735
Remoué, Franck 238
Ren, Xiaoxia 980
Renaud, François 38
Rendi- Wagner, Pamela 687
Rengifo, Graciela 759
Rengifo, Silvia 541
Renia, Fabrice 81
Renom, Montse 8, 9, 572
Renslo, Adam 292
Renteria, Ivy M. 371
Resoulinejat, Mehrnaz 743
Ressner, Roseanne 715
Restrepo, Berta N. 758
Restrepo, Marco 758
Reuter, Stefan 375
Revolorio, Leonicio 403
Reyes, Luisa 138
Reyes, Miguel 684
Reyes, Maria S. 216
Reyes, Sharina 11, 304
Reynolds, Kevin A. 817
Reynolds, Mindy 335
Reynolds, Mary G. 614
Reynolds, Steven J. 96
Reynoso-Ducoing, Olivia A. 273
Rezaeian, M. 399
Rezende, Antônio M. R. 568
Rhodes, Julia 329
Rhorer, Janelle 379
Riarte, Adelina 89
Ribeiro, Antônio Augusto C. M.. 752

Ribeiro, Isabela 497
Ribeiro, Jose M. 665, 876
Rice, Janet 259
Richard, Patrice 81
Richards, Allen L. 434, 438, 1065
Richards, Frank O. 422, 700, 770, 849
Richards, Jean M. 627
Richards, Jack S. 300, 550, 551
Richardson, Jason H. 401, 598, 989
Richie, Thomas L. 11, 43, 48, 216, 217, 304, 412, 581
Ricklefs, Stacy M. 964

Rieckmann, Karl H. 173, 174, 187
Riehle, Michael A. 944
Riehle, Michelle M. 876
Rienthong, Somsak 327
Riley, Eleanor 197, 696
Ringwald, Pascal 968
Rios, M. 416
Rios, Melisa 837
Riscoe, Mike 822
Ritzhaupt, Larry 517
Rivera, Aidsa 112
Rivera, Pilarita T. 564
Rivera, Yisel A. 472
Rizvi, Mushahid A. 202
Robays, Jo 481
Robbins, Gillian E. 477
Roberts, Donald R. 60
Roberts, Reneè N. 490, 798, 861
Robich, Rebecca M. 244, 690, 891
Robinson, Amara L. 543, 674
Robinson, Jaimie S. 128
Robinson, Leanne J. 301
Robinson, Ralph D. 132
Rocha, Crisanta 25, 110
Rocha, C. 930
Rocha, Leonardo 43
Rocha, Manoel O. C.. 316
Roche, Claudine S. Moere
Tevahinetumataunurauarii 449
Rochette, Annie 1068
Rochford, Rosemary 303, 557
Rodas, Antonieta 403
Rodolfo, Carlo 158
Rodrigo, W. W. Shanaka I. 457
Rodrigues, Flávia G. R. 237
Rodrigues, Janneth 885
Rodriguez, Ane 171
Rodriguez, Ana 36, 166, 649
Rodríguez, Beatriz 512
Rodríguez, Glenda 836
Rodriguez, Mary L. 35, 371
Rodriguez, Rocio 627
Rodriguez, Richard 680
Rodriguez, Silvia 30, 31, 33, 35, 371
Rodriguez-Barraquer, Isabel 797
Rodríguez-López, Jannete R. 188
Rodriguez-Morales, Alfonso J.

796, 1000

Rodríguez-Morales, Sergio 270, 271
Roehrig, John T. 1
Roellig, Dawn M. 998
Rogayah, Hanifah 736
Rogers, Kathleen 609
Rogers, Matthew 792
Rogers, William 597
Rogerson, Stephen 552, 693, 808
Rogier, Christophe 238, 818
Rojas, Natalia 35
Rojas, Yanina 738

Roldan, William H. 381
Rollin, Pierre E. 281, 955
Romanos, Eduardo 512
Romero, Héctor 89
Romero-Estrella, Sagrario 996
Romero-Severson, Jeanne 874
Romig, Thomas 372
Romoser, William S. 601
Ronan, Jambou 553
Roncal, Norma E. 656, 817
Roncales, Maria 826
Roongruangchai, Jantima 783
Roonrruangchai, Kosol 783
Roper, Cally 569
Rosado-Paredes, Elsy 465
Rose, Angelika 433
Rose, Robert C. 3, 457
Rosenbaum, Paula 557
Rosenberg, Helene 390
Rosenberg, Melissa B. 382, 917
Rosenthal, Andrew S. 653, 1067
Rosenthal, Philip J. 340, 352,
423, 675, 705, 706
Ross, Amanda 671
Rossiter, Louise 433
Rossnagle, Eddie 580
Rota, Paul 281, 955
Rothman, Alan 24, 453, 765, 767
Rouamba, Noel 423, 424
Rouse, Petrica 229, 838
Roux, Kenneth 692
Rowe, Alexander K. 339
Rowe, Chris 49
Rowe, J. Alexandra 702, 1058
Rowland, Mark 230
Rowland, Michelle 1060
Rowton, Edgar 318, 483
Roy, Lipi 733
Roy, Manojit 959
Rubins, Kate 992
Rubio-Palis, Yasmin 867
Rueda, Leopoldo M. 881
Ruehlen, Nevada 55
Ruel, Theodore D. 705
Ruelas, Debbie S. 292
Ruiz-Espinoza, Gustavo E. 269
Rukmani, S 666
Rulisa, Stephen 635
Rupprecht, C. 957
Rush, Amy C. 777
Rush, Margaret A. 652, 821
Russell, Ian J. 1023
Rutta, Acleus S. M. 842
Ryan, Elizabeth M. 860
Ryan, Edward T. 18, 609
Ryan, Peter A. 644, 979
Ryder, Robert 703

S

Saad, Magdi 925
Saavedra-Rodriguez, Karla L. 626
Sabeti, Pardis C. 162, 368, 579

Sabin, Lora 535
Saborio, Saira 684
Sacarlal, Jahit 8, 9, 572
Sacchettini, James C. 505
Sacci, John B. 158
Sack, Christopher V. 68
Sackey, Sammy T. 198
Sacko, Noumouny 186, 259
Sadacharam, K. 666
Sadasivaiah, Shobha 224
Sadi, Johari 842
Sadofsky, Moshe 146
Sagara, Hawa 409, 710
Sagara, Issaka 421, 492, 635, 717
Sagay, Solomon 692
Sagno, Jean 186, 259
Sagoe, Miriam A. 275, 899
Sah, Binod K. 28
Saha, Sankar K. 1041
Sailor, Karen 722
Saintpere, Fabrice 81
Saito, Mariko 119
Saito, Mayuko 680
Sako, Yasuhito 72, 375
Salako, Lateef A. 179
Salam, Mohamed F. 361
Salanon, Christophe 442
Salanti, Ali 49
Salas, Carola J. 416, 525, 526
Salasek, Michael 1038
Salazar, Milagros 928
Saldarriaga, Emilia 683
Sales, George André F. 752
Salika, Prasert 327, 915
Salimnia, Hussain 719
Sall, Amadou Alpha 466, 689
Sallum, Maria A. 882
Salvador-Recatala, Vicenta 1031
Salvana, Edsel 358
Sam-Agudu, Nadia A. 695
Samake, Mariam 917
Samake, Youssouf 508
Samarakoon, Sajeewani U. 854
Same-Ekobo, Albert 717
Sammons, Scott 274, 991
Sampson-Johannes, A. 730
Samsi, Kiki M. 766
Sanchez, Cesar 986
Sanchez-Burgos, Gilma 152
Sanchez-Vargas, Irma J. 441, 455
Sandhu, Gurjinder 680
Sandoval, Claudia 1000
Sandoval, Marco A. 852
Sang, Rosemary C. 598
Sangare, Lansana 508
Sangsuk, Leelaowadee 327, 329, 915
Sangweme, Davison T. 325
Sanogo, Kassim 421
Sanogo, Kassoum M. 382
Sanogo, Yibayiri O. 1040
Sanprasert, Vivornpun 784
Santana, Mirta 398
Santhosh, S.R. 617
Santiago, Gilberto A. 754

Santiago, Jose 55
Santillan, Frida 852
Santivañez, Saul J. 35, 371
Santolalla, Meddly L. 416, 526
Santolamazza, Federica 871
Santos, Cleiton 98
Santos, Eduardo M. Tarazona 568
Santos, Silvane B. 283
Sanz, Laura 171
Sanz, Sergi 306
Sarfati, Patrice 442, 443
Sarmiento, Maria 175
Sarr, Ousmane 162, 204, 368, 369, 1021
Sathe, Neeraj 124
Sattabongkot, Jetsumon 484, 515, 574, 575
Sauerwein, Robert 846
Saul, Allan 47, 213
Saunders, David L. 173, 174, 415, 1008
Savage, Mason Y. 59, 998
Sawanpanyalert, Pathom 107
Sawanyawisuth, Kittisak 428
Sawyer, L. 730
Saxena, Ajay 182
Saxena, Parag 617
Scanfeld, Dan 369
Scanga, Charles A. 667
Scaraffia, Patricia Y. 236
Scarborough, Robin 274
Schachter-Broide, Judith 394
Schaecher, Kurt E. 430, 565, 832, 863, 934
Schaefer, Brian C. 309
Schaffner, Stephen F. 162
Schaffner, Stephen J. 368
Schal, Coby 589, 889
Schantz, Peter M. 101, 134
Schiehser, Guy A. 173, 174, 505
Schillinger, Anne-Sophie 234
Schimmenti, Lisa A. 695
Schlarman, Maggie S. 493, 861
Schlesinger, Jacob J. 3, 457
Schmaedick, Mark A. 890
Schmaljohn, Connie S. 612
Schnabel, David 619
Schneider, Andre 1070
Schneider, Henning 803
Schneider, Petra 846
Schneider, Toni 1031
Schneider, Timothy G. 366
Schofield, Christopher J. 400
Schofield, Louis 301
Schönian, Gabriele 864
Schuller, Elisabeth 687
Schwartzman, Kevin 383
Schwenk, Robert J. 319
Schwenkenbecher, Jan M. 988
Scopel, Kézia K. 697
Scott, James 328
Scott, Mathews 624
Scott, Robert M. 429
Scott, Thomas W. 264

Scovill, John 102
Se, Youry 934
Seck, Yacine 831
Secor, W. Evan 307, 310, 664
Sedegah, Martha 11, 304, 581
Sedyaningsih, Endang 681
Seear, Michael 90
Seethamchai, Sunee 542, 545
Segeja, Method D. 842
Segovia, Rosana 328
Seiber, Eric 543
Seitz, Amy E. 786
Sejvar, James J. 1041
Self, Joshua S. 614
Sellers, Morgan 870
Sembuche, Samwel H. 842
Semnani, Roshanak 665
Senthong, Wichai 428
Sept, David 1002
Sepulveda Toepfer, Jorge A. 629
Sere, Yves 423
Serpa, Jose A. 32
Serra-Casas, Elisa 306
Serrano, Adelfa E. 836
Serwadda, David 96
Seth, Misago 842
Setha, To 897
Seto, Edmund 675
Severson, David W. 239, 873, 874
Sevilleja, Jesus Emmanuel A. D. 745, 751
Sewell, Charles M. 663
Seydel, Karl 1053
Shaffer, Donna 213
Shahan, David N. 276
Shaheen, Hind I. 905, 906
Shaikh, Gulvahid 907
Shang, Chuin-Shee 105
Shanks, G. Dennis 42, 173, 174, 187
Shapiro, Theresa A. 653
Sharakhov, Igor V. 869, 1028
Sharakhova, Maria V. 869, 1028
Sharar, Kristin L. 7
Shardell, Michelle 731
Shareef, Mohammed O. 907
Sharif, S. K. 546
Sharma, Navneet 432
Sharma, Yagya D. 201, 528, 877
Shaw, Alexandra 794
Shea-Donohue, Terez 983
Sheff, Kelly 330, 331, 908
Shepard, Donald S. 27, 28, 118, 350, 764
Sher, Alan 964
Sherchand, Jeevan B. 789
Shi, Pei-Yong 661
Shi, Weibin 753
Shiff, Clive J. 896, 938
Shililu, Josephat I. 248
Shimp, Jr., Richard L. 576
Shin, Dongyoung 239
Shin, Eun-Hee 567, 608
Shin, Mi-Young 157

Shipton, Warren 713
Shoemaker, Charles B. 333, 629
Shoemaker, David 379
Shoemaker, Ritchie C. 417, 418, 419
Shokoples, Sandra E. 815
Shott, Joseph 44, 96
Shouche, Yogesh S. 869
Showalter, Melissa 630
Shresta, Sujan 7, 762
Shrestha, Mrigendra P. 429
Shrestha, Sanjaya K. 429
Shrivastava, Sandeep K. 521
Shukla, M. M. 201
Shusko, Michael 415
Shustov, Alexandr V. 658
Si, Yuanzheng 168
Siba, Peter 1007
Sibley, Carol H. 173, 174, 533,
827, 828
Sibley, L. David 1075
Sidibe, Bakary 421, 492, 835, 1057
Sidy, Sidy 508
Sieber, Eric 674
Sievers, Amy 734
Sigiscar, Marcel 81
Sihom, Francois 722
Sikaala, Chadwick 841
Sikalima, Jay 938
Silachamroon, U. 1006
Silengo, Shawn J. 1, 114, 471
Sillman, Marla 8, 572
Siludjai, Duangkamon 430
Silumbe, Kafula 844
Silva, Breno M. 450
Silva, Claudia J. 727
Silva, Natal S. 697
Silva, Sheyla 25
Sim, Cheolho 233
Sim, Kim Lee 216
Simard, Frédéric 38, 865, 872, 1027, 1035
Simmons, Cameron 22
Simmons, Kaneatra J. 154, 648
Simmons, Monika 115, 346
Simoes, Mariana 286
Simon, Markus 949
Sims, Jennifer S. 1013
Sims, Peter A. 1013
Sinagra, Angel 89
Singer, Burton H. 851
Singh, Balwan 806
Singh, Mrigendra P. 182, 183, 341, 535, 1055
Singh, Neeru 182, 183, 194, 201,
341, 528, 535, 1055
Singh, Naresh 251
Singh, Paramjit 432
Singh, Puspendra P. 182, 341
Singh, Upinder 1048
Sinha, Prabhat K. 85
Sinishtaj, Sandra 653
Sinnis, Photini 505
Sipilanyambe, Nawa 569

Siqueira, Isadora 283
Siqueira, João B. 28, 764
Siribie, Aboubacar 709
Siriyanonda, Duangsuda 618
Sirois, Patricia 473
Sissako, Aliou 508, 510, 856
Sissoko, Ibrahim M. 868
Sissoko, Sibiry 712
Sitdhirasd, Anussorn 330
Sitdhirasdr, Anussorn 331, 908
Siu, Edwin 187
Skarbinski, Jacek 21, 338, 339, 351
Skelly, Patrick J. 333, 629
Skinner-Adams, Tina S. 165, 500
Skowren, Gail 1045
Slatko, Barton 782
Slemenda, Susan B. 810
Slotman, Michel A. 872
Slutsker, Laurence 338, 339, 351, 546, 546
Slutsker, Laurence 175
Small, Jennifer 989
Smilkstein, Martin 822
Smith, Alan 983
Smith, Adrian D. 356
Smith, Bryan 934
Smith, Craig S. 954
Smith, Derek 483
Smith, David 805
Smith, David L. 532
Smith, Jan 771
Smith, Joe D. 49, 580
Smith, Kirsten 168
Smith, Kristin E. 942
Smith, Martin 1068
Smith, Thomas A. 671
Smith, Valerie 356
Smoak, Bonnie L. 332, 618
Snavely, Jeffrey D. 1015
Snow, Robert W. 339
Soares, Irene S. 697
Sobhon, Prasert 783
Soblik, Hanns 985
Sobry, Agnes 722
Sobsey, Mark D. 53, 54, 56
Socheat, Doung 350, 897, 934, 1004
Sodahlon, Yao K. 720
Soisson, Lorraine 11, 12, 48, 219, 304, 581
Sokhna, Cheikh A. 214
Solano, Maria Gabriela 136
Solano, Mayra E. 894
Solomon, Tom 1042
Solorzano, Nelson 738, 898, 1046
Somboon, Pradhya 232
Song, Jin-Won 958
Songprakhon, Pucharee 2
Sonmez, Gulden 791
Soong, Lynn 668
Soremekun, Seyi 792
Sorgi, Carlos A. S.. 137
Sosa, Iris 754

Sosa-Estani, Sergio 787
Soto, Giselle 680, 728
Soto, Jaime 1001
Soumaoro, Lamine 952
Soumbey-Alley, Edoh William 772
Sousa, Anastacio Q. 479, 1047
Sousa, Taís N. 570
Souza, Daniela I. S.. 137
Souza, Estéfano A. 697
Sow, Samba O. 326, 382, 384, 740, 917
Sowunmi, Akintunde 88, 524, 527, 651
Specht, Sabine 389
Speicher, James 124
Spicher, Martin 75, 376
Spielman, Andrew 244, 690, 891, 1045
Spillmann, Cynthia 392
Spithill, Terry W. 36, 166
Spranger, Stefani 288
Spray, David C. 805
Spring, Michele D. 220, 556
Srikiatkhachorn, Anon 453, 763
Srivastava, A. 617
Sriwichai, Sabaithip 934
St-Jean, Miguel 1075
Staedke, Sarah G. 340, 343, 352
Staerk, Katharina 97
Stahle, David W. 732
Staley, John 187
Stanisic, Danielle I. 159, 301, 551, 552
Stanuszek, William W. 599
Stapleton, Jack T. 313
Starnes, G. Lucas 1075
Starzengruber, Peter 636
Stauber, Christine E. 54
Stav, Gil 1034
Stayback, Gwen 64, 395
Stedman, Timothy 209
Steel, Cathy 950
Steen, Hanno 985
Steinauer, Michelle L. 336
Steinbeiss, Victoria 11
Steindel, Mario 997
Steiner, Kevin 153
Steketee, Richard W. 543, 671, 674, 844
Sterling, Charles 266
Steurer, Frank J. 786
Stewart, V. Ann 44, 218
Stiasny, Karin 687
Stiles, Jonathan K. 147, 194, 804, 1055
Stiles-Ocran, Joseph B. 596
Stinchcomb, Dan T. 114, 471
Stolk, Wilma A. 359, 676
Stoltzfus, Rebecca J. 180
Stoney, Jillian R. 501
Storlie, Patricia A. 144
Stout, Barbara A. 285
Stout, John 982
Stoute, José A. 189, 219

Stracener, Catherine N. 189
Stramer, Susan 348
Street, Ian 554
Strickland, G. Thomas 731
Stripen, Boris 1069
Strode, Clare 621
Strohbusch, Maria 963
Stromdahl, Ellen Y. 435, 1065
Stubbs, Jose 612
Stuedli, Angela 605
Sturtevant, Joy 140
Styer, Linda M. 659
Su, Xinzhuan 209
Suarez, David L. 994
Suarez-Ognio, Luis A. 104, 728, 738, 1046
Suaya, Jose A. 27, 28, 118, 350, 764
Suazo, Harold 645
Subhadra, Bobban 624
Subrahmanyam, Sreenath 396
Subramanian, Ramanand A. 945
Suchman, Erica L. 625
Sughayyar, Rana 28, 764
Sugiarto, P 354, 701
Suguitan, Amorsolo 559
Sujariyakul, Anupong 784
Sukhbaatar, Munkhzul 23
Sukprasert, Walailuk 107
Suktawonjaroenpon, Wachira 515
Sukthana, Yaowalark 604
Sulaiman, Irshad M. 274
Sulaiman, Nikhat 274
Sullivan, Andrew K. 316
Sullivan, David J. 961
Sultan, Ali A. 163
Sultana, Rebeca 281
Sumba, Peter O. 556, 557
Sumibcay, Laarni 958
Sumiwi, Maria E. 736
Sun, Jianxin 62
Sun, Jian 825
Sun, Peifang 115
Sun, Peter 488
Sun, Tao 71
Sun, Wellington 346
Sun, Yanjie 923
Sundar, Shyam 378
Sunderland, Deirdre 962
Supali, Taniawati 785
Surachetpong, Win 251
Surasri, Sittidech 934
Suri, Vikas 432
Susanti, Augustina I. 76
Suswillo, Richard R. 133
Sutherland, Colin 578
Sutthirattana, Saithip 330, 331, 908
Sutton, Patrick L. 850
Suwannachote, Nantawan 586
Suwonkerd, Wannapa 586
Suzuki, Stephanie 533
Svensson, M. 1071
Swa, Tidjane 496

Swaby, James 444
Swalm, Christopher 259
Swan, Ken 473
Swayne, David 994
Swierczewski, Brett E. 295
Sygusch, Jurgen 1075
Sylla, Mariam 326, 712, 740
Sztein, Marcelo B. 324
Szumlas, Daniel E. 61

T

Tabouret, Marc 442, 443
Tachibana, Mayumi 575
Tadesse, Eyob 693
Tahita, Marc Christian 682
Tajima, Shigeru 686
Takahashi, Paula 761
Takala, Shannon L. 14, 530, 969
Takasaki, Tomohiko 686
Takeo, Satoru 484, 574
Talaat, Kawsar R. 390, 667
Tall, Adama 214
Tall, Kouressi 409
Tam, Doan Thi Minh 456
Tamami, Matsumoto 89
Tamang, Leena 962
Tamarozzi, Francesca 72
Tamayo, Pablo 369
Tamboura, Boubou 740, 917
Tamminga, Cindy 115
Tan, Asako 160
Tanabe, Kazuyuki 564
Tang, Guanhong 236
Tang, Kevin 274
Tangpukdee, N 519
Tangpukdee, Noppadon 811
Tangpukdee, Noppadom 1006
Tanner, Marcel 41, 227, 261, 729,
845, 848, 851
Tanowitz, Herbert B. 146, 805
Tanyuksel, Mehmet 431
Tapia, Milagritos D. 326, 382,
384, 740, 917
Tapiero, Bruce 383
Tapley, Erin C. 561
Tappe, Dennis 375
Taquri, Carmen 31
Taraika, Jack 301
Taranto, Néstor 89
Taraschi, Theodore F. 366, 531
Tarazona-Santos, Eduardo 570
Tardif, S. D. 278
Tariq, Parveen 678
Tarleton, Rick L. 1072, 669
Tarnagda, Zekiba 682, 709
Tasca, Karen I. 482
Tatay, Mercedes 725
Tate, Jacqueline 15
Tatto, Erica 997
Tauber, Erich 122, 687
Taylor, Charles E. 868
Taylor, Dennis 654
Taylor, Diane Wallace 425, 559

A-18

 Important Note: The number(s) following author name refers to the abstract number.Taylor, Ronald P. 199, 323
Taylor, Terrie E. 530, 834, 969, 1021, 1053
Taylor, Walter 506, 634, 1006
Tazir, Yasmina 985
Tchinda, Viviane H. M. 425
Teale, Judy M. 34
Teixeira, Andrea 291
Teixeira, Clarissa R. 69, 391, 981, 1039, 1052
Teja-Isavadharm, Paktiya 934
Teklehaimanot, Awash 698
Tekwani, Babu L. 862
Telford, Sam 50, 901, 1045, 1062, 1063
Tellez, Luis 271
Tellez, Yolanda 25
Temu, Emmanuel A. 57
Tenjo, Fernando 440
Tenorio, Michely S. 482
Teodoro, Tatiana M. 294
ter Kuile, Feiko O. 341, 497, 971
Terlouw, Dianne J. 341, 497, 971
Terp, Sophia 439
Terpinski, Jacek 173, 174
Tesh, Robert B. 691
Tetteh, John K. 195, 198
Tetteh, Kevin 302
Teyssou, Rémy 449
Thaisomboonsuk, Butsaya 765, 767
Thalhofer, Colin J. 314
Thamthitiwat, Somsak 329, 911, 915
Thang, Cao Minh 456
Thang, Carole 716
Thangamani, Saravanan 247
Thanh, Nguyen X. 94
Thao, Thi Thu 1042
Thapa, Gyan B. 429
Thavrin, Bou Kheng T. Thavrin. Thavrin. 80
The, Nguyen D. 94
Thea, Donald M. 678
Theander, Thor G. 843
Theisen, Michael 192
Thera, Mahamadou A. 14, 1058
Therrell, Matthew D. 732
Thesing, Phillip C. 834
Thevenon, Audrey D. 559
Thomas, Elizabeth 369
Thomas, Peter 181, 540
Thomas, Stephen 765
Thompson, Anthony 651
Thompson, Eloise 499
Thompson, Katy-Anne 499
Thompson, Winston 147
Thonnard, Joelle 8
Thorat, Swati 801
Thorp, John 703
Thorson, Kelsey 976
Thriemer, Kamala 636
Thuma, Philip E. 229, 677, 896, 838, 938
Thumar, Bhavin 347

Thuy, Le T. T. 94
Thwing, Julie I. 223
Tiamkao, Somsak 428
Ticona, Carlos 898
Tidwell, Richard R. 816
Tielsch, James 180
Tien, Nguyen Thi Kim 443
Tigray Malaria Study Group
(G. Barnabas, A. Bianchi,
A. Bosman, P. Byass, G.

Constanzo, P. Ibarra de
Palacios, N. Jude, A. Morrone,
L. Toma, Ethiopia) 718

Tiinto, Halidou 833
Tilley, Leann 654
Timmann, Christian 785
Tinelli, Carmine 72
Tiono, Alfred 651
Tipayamongkholgul, Mathuros 769
Tippayachai, Bousaraporn 515
Tisch, Daniel J. 358, 556
Tjaden, Jeffrey 115
Tjitra, Emiliana 354, 486, 544, 701, 1004
Tkach, Vasyl V. 880
Tobing, Charles 736
Tobler, Leslie H. 996
Tocheva, Anna 293, 311
Togo, Amadou 421, 492
Togo, Pierre 712
Tokumasu, Fuyuki 487, 588
Toledo, Ampara 627
Toledo, J. 1001
Toliat, Mohamad Reza 388
Tomashek, Kay M. 112, 348
Tomaszewski, Konrad 517
Tomova, Cveta 1069
Tong, Carlos 866
Tongren, Jon Eric 194, 1055
Tonnetti, Laura 606
Tontonoz, Peter 150
Torii, Motomi 208, 574, 575
Torrero, Marina N. 775, 948
Torres, Katherine 206
Torres, Pedro 826
Torres-Jiménez, Fernando 78
Torres-Slimming, Paola A. 19
Toure, Abdoulaye 1057
Toure, Mahamoudou B. 868
Toure, Sekou 421, 492, 835, 1057
Toussaint, Jean Francois 765
Tovar, Marco 680
Toxeira, Clarissa 396
Toz, Seray O. 148, 791
Tozan, Yesim 224, 534
Trampe, Ranferi 403
Tran, Thi Thuy 22
Tran, T.H. 207
Tran, Thu A. 150, 631
Tran, Thanh N. 165
Tran Nguyen, Bich Chau 22
Traore, Aminata 717
Traore, Cheick 952
Traore, Karim 14

Traore, Kalirou 712
Traore, Pierre 409, 710
Traore, Seydou 712
Traore, S. Cheick 1022
Traore, Sekou F. 868
Travers, Thomas 94
Trindade, Giliane 991
Tripathi, N.K. 617
Tripathi, Vinita 395
Trongnipatt, Namtip 515
Trongtorkit, Yuwadee 232
Tropel, David 45
Trostle, James 328
Trouern-Trend, Jonathan 795
Troye-Blomberg, Marita 193
Troyes, Lucinda 738, 1046
Troyes, Mario 898
Troyo, Adriana 894
Trueba, Gabriel 328
Trung, Dinh T. 452
Tsang, Victor C. 30, 31
Tsao, Jean 1060
Tschannen, Andres B. 729
Tsetsarkin, Konstantin A. 613, 658, 730
Tshefu, Antoinette 703
Tsuboi, Takafumi 208, 484, 574, 575
Tsuji, Moriya 805
Tsujimoto, Hitoshi 393
Tsukayama, Pablo 475
Tsvetkova, Albina 129
Tu, Zhijian 869, 871
Tuchman, Jordan 535
Tucker, Compton J. 989
Tuiten, Wieteke 66
Tumer, Derya 900
Tumwine, James K. 426
Turato, Walter M. T.. 137
Turell, Michael J. 125, 598, 880
Turnbull, Lindsey 1053
Tyo, Karen 28, 764
Tzec-Arjona, Juan L. 151, 152
Tzipori, Saul 426

U

Ubalee, Ratawan 515
Udhayakumar, Venkatachalam
194, 341, 535, 971, 972, 1055
Udomsangpetch, Rachanee 515
Ueta, Marlene T. U.. 137
Ulloa-Martínez, Marcela 188
Umaru, John 422
Umeh, Rich 651
Ungchusak, Kumnuan 911, 960
Unger, Alon 380
Unnasch, Thomas R. 363, 781, 875, 880, 926
Urban, Joseph 983
Urdaneta-Marquez, Ludmel 867, 1038
Usera, Aimee 653
Uthaipibull, Chairat 193

Utzinger, Jürg 246, 729
Uzun, Ozcan 431

V

Vahdat, Katayoun 743, 919
Vaidya, Akhil B. 365, 855, 857, 858, 859
Vaillant, Michel 378, 506, 634, 1006
Valda, L 1001
Valderamma, Carlos 886
Valderramos, Juan-Carlos 505, 940
Valderramos, Stephanie 940
Valdez-Padilla, David 270
Valenzuela, Jesus 64, 395, 397
Valenzuela, Jesus G. 69, 391,
396, 981, 1039, 1052, 1061
Valiente-Banuet, Leopoldo 996
Vaillant, M. 1005
van Buuren, Stef 497
van de Pol, Corina 520
Van den Broek, Ingrid 974
van den Eng, Jodi 736
van Dijk, Janneke 677
van Dooren, Giel 1069
Van Dyke, Melissa K. 699
Van geertruyden, Jean-Pierre 937
Van Herp, Michel 974
Vanden Eng, Jodi 223, 464, 546
Vanderberg, Jerome 37, 156
VanEkeris, Leslie A. 942
VanKirk, Nicole 55
Vanlandingham, Dana L. 613, 658, 730
Vannier, Edouard 1045
Varghese, George M. 719
Varma, Subhash 432
Vasconcelos, Helena B. 755
Vasconcelos, Pedro F. C. 123, 131, 755
Vasquez, Rene E. 668
Vasquez, Yessika 40
Vaughan, Jefferson A. 880, 883
Vaughn, David 763
Vaughn, David W. 102, 453
Vazquez Prokopec, Gonzalo M. 392
Veazey, James 520
Veenstra, Timothy D. 665
Veerman, Lennert J. 359
Vekemans, Johan 10, 572
Veland, Nicolás 475
Velasco, John Mark S. 760
Velasco de Castro Oliveira, Juliana 466, 689
Velasco-Villa, A. 957
Velázquez-Márquez, Liliana 273
Velazquez-Martínez, Israel 269
Velez, Juan Diego 43
Velez, Jason O. 128
Vello, Marianne 59

Vemuri, R 544
Venegas, Fay 844
Venkatesan, Meera 870, 878
Ventura, Gladys 738
Verani, Jennifer R. 720
Verastegui, Manuela R. 29, 35
Vergne, Edgardo 756
Verhave, Jan Peter 846
Verma, Rakesh B. 85
Verma, Saguna 460
Verma, S.K. 617
Vernick, Kenneth D. 876
Verrey, François 333
Verter, Joel 379
Vestergaard, Lasse S. 843
Victor, Bjorn 33
Vidal, Carlos E. 850
Vidal, Jaume 826
Vieira, Carlos M. G.. 745
Viera, Juan-Carlos 387
Viera, Sara 512, 513
Vilcheze, Catherine 505
Villacis, Anita G. 400
Villacorte, Elena A. 564
Villafana, Tonya 10
Villalta, Fernando 154, 648
Villanueva Diaz, Jose 732
Villard, Claude 238
Villaseca, Pablo 884
Villegas, Zoila 738, 1046
Villinski, Jeffrey T. 61
Vinayak, Sumiti 528
Vince, Mary 435
Vinetz, Joseph M. 370, 484, 541, 866
Visconti, Sabato 1014
Vissa, Vara 78
Viveiros, Rita de C. S.. 482
Viviani, Simonetta 384
Vogt, Richard G. 600
Volf, Peter 391
Volkman, Sarah K. 162, 204, 368, 579, 1021
Volpe, Katharine E. 1
von Glasenapp, Isabelle 10
von Schubert, Conrad 1076
von Sonnenburg, Frank 122
Vong, Sirenda 26
Vossen, Matthias 636
Vounatsou, Penelope 729
Vourc'h, Gwenael 1060
Vu, T.H. 207
Vu, Thi Que Huong 451, 454
Vuchev, Dimitar 373
Vuitton, Dominique A. 71
Vulule, John 15, 20, 200, 321,
546, 548, 549, 587, 595, 694,
707, 814, 853, 1036, 1056

W

Wacker, Mark A. 160
Wada, Marcelo Y. 997
Wadsworth, Mariha 64, 395
Wagner, Karen 772
Wain, John 741
Waite, Erica 296
Waitumbi, John N. 199, 215, 219, 323, 578, 1016
Walker, Edward D. 587, 595, 599, 1036
Walker, Jeffrey B. 76
Walker, Larry A. 862
Wallace, James 186
Waller, Lance A. 627, 786
Walls, Colleen D. 967
Walsh, Doug 735
Walter, Nicholas 21
Walter Reed Clinical Leishmaniasis Group 379
Walther, Michael 197, 210, 696, 812
Walton, Shelley 433
Wamachi, Alex 153
Wamulume, Pauline 355, 543
Wang, Danher 345
Wang, Eryu 927
Wang, Guangze 970
Wang, Hua 279
Wang, Heuy-Ching 610
Wang, Hui 1066
Wang, Shanqing 970
Wangrungsarb, Piyada 911
Wanionek, Kimberli 347
Ward, Honorine D. 609
Ward, Jerrold
Ward, Jerrold M. 396, 1017, 1061
Ward, Michelle 346
Ward, Steve A. 1003
Ware, Lisa A. 218
Waree, Phuangphet 604
Warikar, N. M. 354, 701
Warke, Rajas 24
Warner, Jeffrey 713
Warren, Ben 1023
Warren, Cirle A. 745
Wartel-Tram, Anh 344
Watany, Noha 61
Waterman, Stephen 110, 469
Waters, Norman C. 656, 817, 820
Watila, Ismaila 651
Watts, Douglas M. 615
Wawer, Maria J. 96
Weatherall, David J. 207, 1059
Weaver, Scott C. 278, 615, 927, 928
Webster, Francis X. 68
Weigand, Roger 821
Weil, Gary J. 360, 361, 362, 777, 779, 1014
Weina, Peter J. 167, 168, 169, 170, 318, 415, 480, 1009
Weinberg, Brice 486

Weiner, Mathew 905, 906
Weiss, Louis M. 146
Weiss, Walter 581
Welch, David 349
Wells, Michael A. 235, 236
Wendel, Clifford E. 618
Wenink, Emily 811
Werbovetz, Karl 1002
Were, Tom 20, 200, 321, 353, 548, 549, 694, 707, 1056
Wesson, Dawn W. 130, 186, 259,
473, 886, 889, 1034
Westbrook, Catherine J. 582
Weverling, Gerrit-Jan 44
Wheeler, Sarah 459
White, A. Clinton 32, 610, 986
White, Gregory S. 926
White, Nicholas J. 936, 1042
White, Sandy 390, 667
Whitehead, Stephen S. 124, 347
Whitehouse, Chris 125
Whittle, Hilton 302
Whitty, Christopher J. M. 343, 356
Wichmann, Ole 725
Wickramarachchi, Thilan A. 566
Widdowson, Marc-Alain 15, 439
Widyastuti, Endang 736
Wiegand, Roger C. 162, 204, 368, 652
Wiggan, O’Neil 114, 471
Wikel, Stephen K. 62, 247
Wilairatama, P 1006
Wilder, Tuere 311
Wilkerson, Richard C. 881, 882
Will, Roeffen 846
Williams, Frank 11, 216, 304
Williams, Gail M. 71, 290, 1051
Williams, Janice 292
Williams, Jackie 319
Williams, Jeffrey F. 55
Williams, Steven A. 136, 781, 1014
Williams, Tom 300
Williams, Thomas 554
Williamson, Kim C. 518
Willis, Steven G. 594
Wills, Bridget 452
Wilson, Alan 296
Wilson, Danny 551
Wilson, Ian J. 336
Wilson, Leslie S. 996
Wilson, Marianna 101
Wilson, Michael D. 211, 596
Wilson, Mary E. 144, 313, 314, 630
Wilson, Mark L. 599, 699, 999
Wilson, Nana 147, 804, 1055
Wilson, Ron 260
Winstanley, Peter A. 1003
Winter, Rolf 822
Winters, Anna M. 888
Winzeler, Elizabeth 369

Wirth, Dyann F. 162, 204, 368,
489, 524, 527, 579, 652, 821,
824, 935, 1013, 1021
Wise de Valdez, Megan R. 625
Witzig, R. 416
Wlazlo, Anthony 124
Woehlbier, Ute 194
Wohlhueter, Robert 274
Wojick, Richard 104
Wölfel, Roman 463, 904
Wolff, Brian 292
Wolkon, Adam 546
Won, Kimberly 101, 134
Wong, Joseph 705
Wongjindanon, Wanna 327, 329, 915
Wontuo, Peter 439
Woodard, Lauren 653
Wootton, Dan 1003
Woraratanadharm, Jan 345
Wormser, Gary 1045
Wortmann, Glenn 379, 395
Wu, Bo 782
Wu, Hai-Wei 70
Wu, Haiwei 335
Wu, Shuenn-Jue 115, 444
Wu, Wenjie 1032
Wu, Xiao-Jun 298
Wylie, Blair J. 535
Wynn, Thomas A. 309
Wypij, David 369
Wysocki, Vicki H. 236

X

Xayavong, Maniphet 810
Xi, Zhiyong 640
Xia, Ai 869, 1028
Xiao, Shu-Yuan 691
Xie, Lisa 167, 169, 170
Xiong, Tie 1051
Xiong, Xu 473
Xu, Jin-Mei 70
Xu, Zhi-yi 26
Xue, Gongda 1076

Y

Yabsley, Michael J. 59, 998
Yanagi, Tetsuo 789
Yanagihara, Richard 468, 958
Yancey, Linda S. 610
Yang, Hae-Won 267
Yang, Yu R. 71
Yano, Kazuhiko 208
Yanoviak, Stephen 623
Yanow, Stephanie K. 36, 166, 815
Yao, Chaoqun 144
Yaremych-Hamer, Sarah 1060
Yaro, Alpha S 1022
Yasmin, Tabassum 907
Yates, John R. 370

Yates, Terry L. 958
Yauch, Lauren E. 7, 762
Yazdani, Syed S. 191, 222
Ye-Ebiyo, Yemane 891
Yeboah-Antwi, Kojo 535
Yee, Eileen 15
Yen, Nguyen T. 644
Yeo, Tsin 486
Yeom, Joon-Sup 157
Yépez-Mulia, Lilián 269, 270,
271, 272, 273
Yeung, Shunmay 936
Yiadom, Boakye 637
Yimamnuaychok, Nongnuch 515
Yin, Yong 779
Yingst, Sam 925
Ylla-Velasquez, Jose 627
Yong, Yin 362
Yongvanitchit, Kosol 218
Yoo, Ji-Ae 157
Yoo, Won Gi 284
Yoon, In-Kyu 113, 760
Yori, Pablo P. 541
Yosaatmadja, Francisca 693
Yoshino, Timothy P. 298, 1030
Yougbare, Issaka 682, 709
Young, Mary 1045
Young, Steve 663
Yourick, Debra 502
Youssef, Fouad G. Y. 918
Ypil-Butac, Charity A. 760
Yu, Min 505
Yu, Xinling 1051
Yuesheng, Li 1051
Yumiseva, Cesar A. 400
Yurchenko, Vyascheslav 146
Yusuf, Bidemi 404
Yuwono, Djoko 766

Z

Zaidenberg, Mario 392, 398
Zaks, Laurel 16
Zamalloa, H. 957
Zambrano, Betzana 344
Zamora, Jorge 976
Zanotto, Pablo M. de A 466, 689
Zborowski, Maciej 809
Zea-Flores, Guillermo 387
Zeba, Augustin N. 709
Zeccer, Suzana 997
Zeng, Qiang 168
Zhang, Jing 167, 169, 170
Zhang, Luhua 116
Zhang, Lixin 328
Zhang, Mengzi 298
Zhang, Qiong 739
Zhang, Si-Ming 285
Zhang, Shuliu 660
Zhang, Wei 71
Zhang, Xuebin 825
Zhang, Yanling 576
Zheng, Feng 1051
Zheng, Hong 1017

Zhou, Ainong 425, 559
Zhou, Hong 13, 47, 48
Zhou, J. 1051
Zhou, Yingyao 369
Zhou, Zhiyong 971, 972
Zhu, Daming 213, 573
Zhu, Jianzhong 1020
Zhu, Liqun 367
Ziegler, Rolf 976
Ziegler, Sarah A. 691
Zijlstra, Edward 1003
Zimmerman, Peter A. 159, 181, 540, 695, 699, 809, 814
Zimmerman, Robert H. 883
Zinyowera, Sekesai 325
Zollner, Gabriela 185, 401
Zongo, Issaka 423, 424, 833
Zou, Xiaoyan 217
Zúniga, Concepción 787
Zurovac, Dejan 339, 351
Zwang, Julien 1005

