1190

THE LAMBARÉNÉ-ORGAN-DYSFUNCTION SCORE (LODS) IS A SIMPLE CLINICAL PREDICTOR FOR FATAL MALARIA IN AFRICAN CHILDREN

Raimund Helbok ${ }^{1}$, Eric Kendjo², Saadou Issifou², Peter Lackner³, Charles R. Newton ${ }^{4}$, Maryvonne Kombila ${ }^{5}$, Tsiri Agbenyega ${ }^{6}$, Klaus Dietz ${ }^{7}$, Kalifa Bojang ${ }^{8}$, Erich Schmutzhard³, Peter G. Kremsner²
${ }^{1}$ Medical Research Unit, Albert Schweitzer Hospital, Lambaréné, Gabon; Innsbruck Medical University, Clinical Department of Neurology, Austria, ${ }^{2}$ Medical Research Unit, Albert Schweitzer Hospital, Lambaréné, Gabon; Department of Parasitology, Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany, ${ }^{3}$ Innsbruck Medical University, Clinical Department of Neurology, Innsbruck, Austria, ${ }^{4}$ Centre for Geographical Medicine, Kenya Medical Research Institute Kilifi, Kilifi, Kenya; Neuroscience Unit, Institute of Child Health, University College London, London, United Kingdom, ${ }^{5}$ Department of Parasitology, Mycology and Tropical Medicine, Faculty of Medicine, University of Health Sciences Libreville, Libreville, Gabon, Gabon, ${ }^{6}$ University of Science and Technology, School of Medical Science, Kumasi, Ghana, 'Department of Medical Biometry, University of Tübingen, Tübingen, Germany, ${ }^{\circledR}$ Medical Research Council Laboratories, Banjul, Banjul, Gambia

Plasmodium falciparum malaria accounts for more than a million deaths annually, mostly among young children in sub-Saharan Africa. Identifying those who are likely to die is difficult. Prior studies suggested that quantitative scores (Multi-Organ-Dysfunction Score and simplified Multi-Organ-Dysfunction Score, MODS and sMODS) are useful markers predicting morbidity, but the cohorts were not large enough to detect an association with case fatality. We used stepwise backward logistic regression to select the best predictors out of nine variables evaluated on admission to predict death in 23,800 hospitalised children with P. falciparum malaria. The study was conducted from December 2000 to May 2005 in six hospital-based research units (Banjul in The Gambia, Blantyre in Malawi, Kilifi in Kenya, Kumasi in Ghana and Lambaréné and Libreville in Gabon) in a network established to study severe malaria in African children (SMAC). The Lambaréné-Organ-Dysfunction-Score (LODS) counts how many of the three variables coma, prostration and deep breathing are present. A LODS $>0(O R=9.6 ; 95 \% \mathrm{CI} 8.0-11.4)$ has a sensitivity of 85% to predict death and a LODS <3 is highly specific for survival (98%). The LODS is a simple clinical predictor for fatal malaria in African children. This score provides a sufficiently accurate and rapid identification of children needing either referral or increased attention.

1191

SULFADOXINE-PYRIMETHAMINE VERSUS UNSUPERVISED ARTEMETHER-LUMEFANTRINE VERSUS UNSUPERVISED AMODIAQUINE-ARTESUNATE FIXED-DOSE FORMULATION FOR UNCOMPLICATED FALCIPARUM MALARIA IN BENINESE CHILDREN: A RANDOMIZED EFFECTIVENESS NONINFERIORITY TRIAL

Jean-François Faucher ${ }^{1}$, Agnes Aubouy ${ }^{1}$, Adicat Adeothy ${ }^{1}$, Justin Doritchamou', Hortense Kossou ${ }^{2}$, Hyacinthe Amedome ${ }^{3}$, Achille Massougbodji4, Michel Cot ${ }^{5}$, Philippe Deloron ${ }^{5}$
${ }^{1}$ IRD, Cotonou, Benin, ${ }^{2}$ PNNLP, Cotonou, Benin, ${ }^{3}$ Ministry of Public health, Cotonou, Benin, ${ }^{4}$ FSS, Cotonou, Benin, ${ }^{5}$ IRD, Paris, France

In order to measure the potential impact of the 2004 malaria treatment guidelines in Benin that recommend ACTs (artemisinin-based combination therapies: artemether-lumefantrine as first line therapy and amodiaquineartesunate as second line therapy) in the management of uncomplicated malaria in young children, we conducted an open randomised noninferiority trial to compare the effectiveness of sulfadoxine-pyrimethamine (SP) to unsupervised artemether-lumefantrine (AL) and to unsupervised amodiaquine-artesunate fixed-dose formulation (ASAQ). The trial took place in southern Benin in children aged 6 to 60 months with fever or a
history of fever, and a 6 -weeks follow-up was performed after treatment The primary objective was a comparison of day 28 PCR-corrected effectiveness rates. 240 children (48 SP, 96 AL and 96 ASAQ) with a mean age of 26 months were randomized from May to October 2007. Before PCR correction, the intention to treat (ITT) analysis (239 patients) showed day 28 effectiveness rates of $20.8 \%, 78.1 \%$ and 70.5% with SP, AL and ASAQ respectively. After PCR correction, day 28 ITT effectiveness rates were $27.1 \%, 83.3 \%$ and 87.4% respectively. The per protocol analysis (217 patients) showed day 28 effectiveness rates of $21.7 \%, 88.0 \%$ and 76.1% with SP, AL and ASAQ respectively. After PCR correction, day 28 effectiveness rates were $28.3 \%, 94.0 \%$ and 93.2% respectively. Comparisons of SP with ACTs were highly significant in any case, whereas there was no significant difference between AL and ASAQ in the PCRcorrected analyses. The rate of new infections was significantly higher in children treated with ASAQ compared to those treated with AL. Two children treated with SP had to be hospitalized for severe anemia. There was no difference between treatment arms in terms of incidence of adverse events. No severe adverse event was related to a study drug. The potential impact on malaria morbidity and mortality of the replacement of SP by ACTs in this study area could be highly significant.

1192

RISK FOR SEVERE DISEASE IN ADULTS WITH FALCIPARUM MALARIA

Geoffrey Pasvol ${ }^{1}$, Anastasia Phillips ${ }^{2}$, Paul Bassett², Sebastian Szeki², Stanton Newman³
${ }^{1}$ Imperial College London, Harrow, United Kingdom, ${ }^{2}$ Northwick Park Hospital, Harrow, United Kingdom, ${ }^{3}$ University College London, London, United Kingdom
We conducted a clinical study of malaria acquired worldwide in adults in a non-endemic country over a 16 year period to determine risk factors for severe Plasmodium falciparum malaria. All patients managed by our unit from 1991 to 2006 with confirmed malaria were prospectively evaluated Factors predicting disease severity according to a) strict World Health Organisation (WHO) criteria, b) a composite measure of unfavourable outcome and c) length of hospital stay, were identified through logisticregression analysis. We evaluated 676 episodes; 482 (71\%) due to P. falciparum and 194 to non-falciparum malaria. Black patients were at significantly reduced risk of developing severe disease, an unfavourable outcome or prolonged stay in hospital compared to Asians or whites. Of six patients with falciparum malaria who died, none were black. Patients with parasitemias $\geq 2 \%$ had odds of severe malaria of 12 times higher than patients with $<2 \%$ parasites. Patients with a history of previous clinical malaria, regardless of ethnicity, were at significantly reduced risk of WHO-definition severe malaria. Ethnicity and parasitemia are important independent risk factors for severe falciparum malaria while a history of previous malaria significantly reduces the risk of severe disease (WHO Criteria). These results have important implications for management guidelines in non endemic countries

1193

ASSESSING THE CARDIAC EFFECTS OF ARTESUNATE (AS) AND AMODIAQUINE (AQ) IN HEALTHY VOLUNTEERS IN A SAFETY AND PK, SINGLE DOSE, RANDOMISED, TWO PHASE CROSS OVER STUDY OF A NEW FIXED DOSE AS/AQ COMBINATION AND LOOSE AS + AQ

Walter Taylor ${ }^{1}$, Mohamed Suhaimi², Siew Gab², Suresh Ramanathan ${ }^{3}$, Sharif Mansor ${ }^{3}$, Michel Vaillant ${ }^{4}$, NW Sit ${ }^{3}$, Piero Olliaro5, Jean-Rene Kiechel ${ }^{6}$, Viswerwaran Navaratnam ${ }^{3}$
${ }^{1}$ 'Oxford University, Hanoi, Vietnam, ${ }^{2}$ Universiti Sains Malaysia, Kubang Kerian, Malaysia, ${ }^{3}$ Universiti Sains Malaysia, Penang, Malaysia, ${ }^{4}$ Centre for Health Studies, Luxembourg, Luxembourg, ${ }^{5}$ WHO/TDR, Geneva, Switzerland, ${ }^{6}$ DNDi, Geneva, Switzerland
Evaluating QT prolongation as a risk marker for Torsades de Pointe ventricular tachycardia is an essential step for registering new drugs. AS and AQ are well established, antimalarial drugs but have few cardiac data. AQ may be cardiotoxic in overdose. In a randomized, two phase, pharmacokinetic and safety, cross over study, healthy Malaysian adults received fixed-dose AS/AQ $(200+540 \mathrm{mg})$ and loose AS+AQ $(200+$ 600 mg) 60 days apart. ECGs were performed at baseline, $1 \mathrm{~h}, 2 \mathrm{~h}, 4 \mathrm{~h}$, $24 h$, Day 60 and repeated at cross-over. The QT interval was corrected using the Fridericia formula (QTCF). Analysis was by ANOVA for repeated measures. There were no statistically significant differences between the two arms regarding the PR, QRS and QTCF intervals over time. The baseline QTcFs were $396(\pm 18) \mathrm{ms}$ for both arms. Mean QTcF (AS+AQ) increased significantly at $2 \mathrm{~h}(7 \pm 13 \mathrm{~ms}, \mathrm{p}=0.018)$ and $4 \mathrm{~h}(7 \pm 11 \mathrm{~ms}, \mathrm{p}=0.008)$. The only significant change for AS/AQ was a decrease ($\mathrm{p}=0.013$) in the QTcF on D60: -14 (-25 to -4) ms. Post baseline, most volunteers had normal QTcFs despite increases or decreases in the QTcF. Only one (male) volunteer had a 'flag' QTcF of 456 ms (AS/AQ +4 h, phase 2). Changes in the PR (maximum values $=206$ to $211 \mathrm{~ms}, \mathrm{n}=2$) and QRS (maximum values $=122$ and $127 \mathrm{~ms}, \mathrm{n}=2$) intervals were modest. Heart rates were normal during both phases and trended down over time. The ECG interval changes were small and transient, consistent with natural variation and regression of the mean. PK ECG analyses will be done to determine if a drug effect may be present.

1194

INTRAVASCULAR HEMOLYSIS: A NEGLECTED MECHANISM OF NITRIC OXIDE QUENCHING, ENDOTHELIAL DYSFUNCTION and impaired perfusion in severe falciparum MALARIA?

Tsin W. Yeo ${ }^{1}$, Daniel Lampah², Emiliana Tjitra³, Retno Gitawati, Enny Kenangalem ${ }^{4}$, Kim Piera ${ }^{1}$, Bert Lopansri ${ }^{5}$, Don Granger ${ }^{5}$, J Brice Weinberg ${ }^{6}$, Ric Price ${ }^{1}$, David Celermajer ${ }^{7}$, Stephen Duffull ${ }^{8}$, Nick Anstey ${ }^{1}$
${ }^{1}$ Menzies School of Health Research, Darwin, Australia, ${ }^{2}$ MSHR-NIHRD Research Program and District Health Authority, Timika, Papua, Indonesia, ${ }^{3}$ National Institute of Health Research and Development, Jakarta, Indonesia, ${ }^{4}$ MSHR-NIHRD Timika Research Program and District Health Authority, Timika, Papua, Indonesia, ${ }^{5}$ University of Utah, Salt Lake City, UT, United States, ${ }^{6}$ Duke University, Durham, NC, United States, 'University of Sydney, Sydney, Australia, ${ }^{8}$ University of Otago, Dunedin, New Zealand
Hemolysis of infected and uninfected red cells has long been recognized as a significant contributor to malarial anemia, but has not been thought of as a contributor to endothelial dysfunction and activation in severe malaria. In sickle cell disease, hemolysis causes quenching of endothelial nitric oxide (NO) resulting in pulmonary hypertension and endothelial activation. We hypothesized that similar to other hemolytic states, cell free hemoglobin from red cell hemolysis would contribute to quenching of nitric oxide and endothelial dysfunction in severe falciparum malaria. Plasma hemoglobin was measured in adults with moderately severe ($n=78$) and severe malaria ($n=49$), and in healthy controls ($n=23$), and was related
to endothelial function measured using reactive hyperemia-peripheral arterial tonometry (RH-PAT, a measure of endothelial NO bioavailability). Linear regression was used to relate concentrations of plasma hemoglobin with malaria disease severity, lactate, endothelial function and plasma histidine rich protein-2 (HRP2). Plasma cell-free hemoglobin was associated with disease severity, being higher in severe malaria (median $91.7 \mathrm{ng} /$ mL [IQR 53.7-125]) than in moderately severe malaria (median $44.2 \mathrm{ng} /$ mL [IQR 22.2-76]) or healthy controls (median $22.6 \mathrm{ng} / \mathrm{mL}$ [IQR 15.840.8]). Plasma hemoglobin was independently associated with endothelial dysfunction ($r=0.33 ; p=0.0001$) and increased venous lactate. As well as contributing to anemia in falciparum malaria, hemolysis causes NO quenching and may be a significant contributor to endothelial dysfunction and impaired microvascular perfusion in severe malaria.

1195

PHARMACOKINETIC PROPERTIES OF CHLOROQUINE AND SULFADOXINE-PYRIMETHAMINE IN PREGNANCY

Harin A. Karunajeewa ${ }^{1}$, Ivo Mueller², Madhu Page-Sharpe ${ }^{1}$, Irwin Law¹, Sam Salman¹, Gomorrai Servina², Jovitha Lammey², Stephen Rogerson³, Peter Siba², Kenneth F. Ilett¹, Timothy M. Davis ${ }^{1}$
${ }^{1}$ University of Western Australia, Perth, Australia, 2Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea, ${ }^{3}$ University of Melbourne, Melbourne, Australia
Intermittent preventive treatment in pregnancy (IPTp) may reduce maternal and infant morbidity and mortality. However, few pharmacokinetic (PK) and/or safety data exist for antimalarial drugs in pregnancy. Although chloroquine (CQ) and sulfadoxine-pyrimethamine (SP) are used widely and considered safe, PK data is needed to optimize dosing and maximize effectiveness of IPTp. We have, therefore, performed a PK study of CQ + SP in 30 pregnant women and in a control group of 30 age-matched non-pregnant women in Papua New Guinea. All received one dose of SP ($1500 / 75 \mathrm{mg}$: mean $28 / 1.4 \mathrm{mg} / \mathrm{kg}$) and 3 daily doses of CQ ($450 \mathrm{mg} / \mathrm{day}$: $8.5 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$). Women were bled up to 16 times over the ensuing 42 days and plasma assayed for CQ, desethylchloroquine (DECQ), S, N-acetylsulfadoxine (NA-S), and P by HPLC. From compartmental modeling of concentration-time data, the volume of distribution (Vd), clearance (Cl) and elimination half-lives ($\mathrm{t} 1 / 2 \mathrm{e}$) of CQ, S and P were determined. AUC was determined by non-compartmental analysis. Differences in PK parameters between pregnant and non-pregnant groups were assessed by non-parametric statistical methods. A two-compartment model bestdescribed the CQ data and showed that, compared with non-pregnant controls, pregnant subjects had similar Vd (median 180 vs $1561 / \mathrm{kg}$ in non-pregnant group: $\mathrm{P}=0.5$) but significantly more rapid $\mathrm{Cl}(15$ vs $11 \mathrm{ml} /$ $\mathrm{min} / \mathrm{kg}: P=0.04$), shorter $\mathrm{t} 1 / 2 \mathrm{e}$ (196 vs 236h: $P=0.03$) and lower AUC for both CQ (34 vs $56 \mu \mathrm{~g} . \mathrm{h} / \mathrm{I}: \mathrm{P}<0.01$) and DECQ (25 vs $47 \mu \mathrm{~g} . \mathrm{h} / \mathrm{l}: \mathrm{P}<0.01$). A one-compartment model best-described the disposition of S showing significantly larger $\mathrm{Vd}(0.24 \mathrm{vs} 0.21 / \mathrm{kg}: \mathrm{P}<0.01)$, more rapid $\mathrm{Cl}(0.022 \mathrm{vs}$ $0.016 \mathrm{ml} / \mathrm{min} / \mathrm{kg}: P<0.01$), shorter $\mathrm{t}^{1} / 2 \mathrm{e}$ ($134 \mathrm{vs} 161 \mathrm{~h}: ~ P=0.03$) and lower AUC (22 vs $34 \mathrm{~g} . \mathrm{h} / \mathrm{l}: \mathrm{P}<0.01$) in pregnant subjects. Data for P will also be presented. Because lower plasma concentrations of CQ, DECQ and S could compromise both curative efficacy and post-treatment prophylactic properties in pregnant patients, IPTp regimens should incorporate higher $\mathrm{mg} / \mathrm{kg}$ doses than recommended for non-pregnant patients.

1196

CD8+ T CELL RESPONSES IN NONLYMPHOID TISSUE AND PARASITE CONTROL DURING TRYPANOSOMA CRUZI INFECTION

Matthew H. Collins, Rick L. Tarleton
University of Georgia, Athens, GA, United States
Chagas disease is caused by persistent infection with Trypanosoma cruzi. Amastigotes of this protozoan parasite replicate in host cell cytosol, allowing parasite antigens to be presented via class I major
histocompatibility complex. Thus, CD8+ T cells are critical to the immune response to T. cruzi. Though the surface phenotype of CD8+ T cells in both spleen and skeletal muscle is consistent with an effector/effector memory phenotype, most CD8+ T cells from skeletal muscle of T. cruziinfected mice are incapable of interferon- γ (IFN γ) production upon ex vivo restimulation, suggesting a functional defect that could promote parasite persistence. To determine if this phenomenon was specific for skeletal muscle, we examined adipose tissue, a recently-identified site of parasite persistence in mice. Like CD8+ T cells infiltrating muscle, those in adipose tissue also display an effector/effector memory phenotype and are poor producers of IFN γ after ex vivo restimulation. Thus, we conclude that CD8+ T cells isolated from sites of parasite persistence in chronic T. cruzi infection have a phenotype and effector potential that is independent of tissue microenvironment. Despite their apparent low effector, we hypothesize that CD8+ T cell activity in sites of parasite persistence is transient but crucial, given that parasite load is very well controlled in these tissues. In support of this hypothesis, we found that a substantial fraction of CD8+ T cells at the sites of infection express the recent activation marker CD69, indicating that this portion of CD8+ T cells is likely responding to parasite antigen. Moreover, trackable CD8+ T cells from spleens of naïve or T. cruzi-infected mice transferred into mice with established infection are incorporated into the ongoing response in recipient tissue, developing into effectors and effector memory T cells. We propose a model in which CD8+ T cells contribute to a dynamic peripheral immune response that maintains control of this continuously replicating parasite.

1197

LEISHMANIA BRAZILIENSIS INTERACTION WITH DENDRITIC

 CELLS: DISTINCT ROLES FOR TLR2 AND TLR3
Diego A. Vargas-Inchaustegui, Lijun Xin, Lynn Soong

 University of Texas Medical Branch, Galveston, TX, United StatesLeishmania braziliensis ($L b$) is the causative agent of cutaneous and mucosal leishmaniasis (ML) in South America. In humans, ML is a severe and disfiguring form of the disease and is characterized by excessive B and T cell responses to the parasite. In animal models of $L b$ infection, most inbred strains of mice are genetically resistant to infection, showing only a transient period of active disease. We have recently reported the selective activation of murine DCs and up-regulation of several signals (e.g., STATS and ISG15) that are essential for the activation of innate immunity against $L b$ in mice, as reported previously. However, it remains unclear whether pathogen recognition receptors, such as TLRs, are involved in DC activation, and, if so, how these early events lead to the production of proinflammatory cytokines in $L b$-infected DCs. To address these issues, we generated bone marrow-DCs from MyD88 $\%$, TLR2 $\%$ and TLR3 3^{-}mice and examined their responsiveness to $L b$ infection. In contrast to wild-type DCs, which were efficiently activated to produce cytokines and to prime naïve CD4+ T cells, the lack of TLR2 expression resulted in a significantly higher expression of MHC class II and co-stimulatory molecules and IL12 p40. As such, $L b$-infected TLR2 ${ }^{-} D C s$ were more competent in priming naïve CD4+ T cells in vitro than were the wide-type controls. This enhanced DC function was unique to TLR2 deficiency, because similarly infected MyD88 and TLR3*DCs showed a significant reduction in DC activation and T cell priming. Given that TLR2 is known to negatively regulate signals triggered by exogenous stimuli, we propose that TLR2 and TLR3 may play distinct roles in $L b$ infection and are further testing this hypothesis via in vitro and in vivo approaches. This study will provide new information on the regulation of innate immunity to Leishmania parasites.

TLR INVOLVEMENT DURING EXPERIMENTAL MALARIA: IMPLICATIONS FOR BOTH ENDS OF THE CLINICAL SPECTRUM OF HUMAN DISEASE

Constance A. Finney, Ziyue Lu, W. Conrad Liles, Kevin C. Kain University of Toronto, Toronto, ON, Canada
Plasmodium berghei is a murine model for cerebral malaria whilst P. chabaudi is used to study hyperparasitaemia and anemia. The first is characterized by early excess inflammation, leading to host immunopathology and death ('hyperresponsive' model). The second lacks the initial inflammatory response, however, death occurs later through uncontrolled parasitaemia ('hyporesponsive' model). We hypothesized that each model represents a pole of the clinical spectrum observed in human disease, and anticipated that TLRs (and their signaling pathways) would be involved in these divergent clinical outcomes. Despite the important role played by TLR2 in GPI signaling, in both models, no differences were observed between infected TLR2-/- animals compared to wildtype controls (WT). P. berghei-infected TLR2-/- mice did not show increased survival compared to susceptible WT mice; parasitaemias, weight, hematocrit, urine hemoglobin and plasma cytokines were similar between the two groups. Furthermore, as with WT mice, TLR2-/- animals infected with P. chabaudi proved resistant to infection. No difference was observed in any of the measured parameters between the groups. Contrastingly, in both models, infected IRAK4-/- mice (IRAK4 is a molecule involved in TLR signaling) showed marked differences to WT and TLR2-/- mice during infection. When infected with P. berghei, the survival of IRAK4-I- mice ($>40 \%$ at day 14) was highly improved compared to controls (0% by day 9). Parasitaemias and serum cytokine levels were decreased (TNF, IFN-, IL-10, p<0.05, Mann-Whitney U), emphasizing the detrimental role of IRAK4 and TLR signaling in early inflammatory responses to malaria. During P. chabaudi infection, however, the survival of IRAK4-/- animals was significantly lower than WT animals; the mice also had higher parasitaemias (Kruskal-Wallis, $\mathrm{p}<0.01$), greater weight loss and lower serum cytokine levels than wild-type mice (TNF, two-way ANOVA, $\mathrm{p}<0.05$). This demonstrates the key role played by IRAK4 late in infection, required for parasite clearance. Data from our experiments demonstrate that abrogating inflammation at one end of the clinical spectrum (cerebral malaria) is beneficial to the host, whilst, at the other end of the spectrum (hyper-parastaemia/anemia), it worsens disease. Our findings emphasize the importance of integrated studies in order to fully understand the impact of treatment/interventions on malaria infection.

1199

MOSQUITO RUNX4 IN THE IMMUNE REGULATION OF PPO GENES AND ITS EFFECT ON AVIAN MALARIA INFECTION

Sang Woon Shin, Zhen Zou, Kanwal Alvarez, Vladimir Kokoza, Alexander Raikhel
University of California Riverside, Riverside, CA, United States
Melanization is a prominent defense mechanism employed by arthropods, including mosquitoes. Conflicting results have been reported when discerning whether phenoloxidase (PO) activation and melanin synthesis can successfully combat the infections of many bacterial and fungal species in flies and the malaria parasites in mosquitoes. The extensive gene expansion of 10 proPO genes, which encode key enzymes to activate melanization, in the mosquito, Aedes aegypti, lead us to hypothesize that mosquito melanization reactions have been diversified for distinct purposes. Thus, we showed that the loss of malaria parasites by ookinete melanization in Cactus-depleted mosquitoes is a distinct mechanism from the melanotic tumor formation resulting from Serpin-2 depletion in the mosquito, Aedes aegypti. Furthermore, we report that the parasitic loss in the mosquitoes with Cactus depletion is mediated by RUNX4, the orthologue of Drosophila Lozenge and a specific transcriptional activator of immune-inducible proPO genes. Specifically, we found that microbial infection induced four mosquito PPO genes, which are proposed to
be independent of Serpin-2 inhibition. This up-regulation is activated indirectly by the Toll immune pathway and directly by RUNX4. Mosquito RUNX4 specifically bound to the RUNT-binding motifs from the mosquito PPO gene promoters and activated Drosophila PPO genes in S2 cells. Concurrent silencing of RUNX4 and Cactus dismissed the activation of immune-inducible PPO genes resulting from Cactus depletion and thus compromised the killing of the avian malaria parasite Plasmodium gallinaceum. Our findings reveal the presence of a RUNX4-dependent immune activation of PPO genes under the regulation of the Toll immune pathway and its potential immune role to restrict the parasite development. We will further address the role of RUNX4 and immuneinducible PPOs in the immune response against the malaria parasite.

1200

STIMULATION OF TOLL-LIKE RECEPTOR 2 BY PLASMODIUM FALCIPARUM GLYCOSYLPHOSPHATIDYLINOSITOLS ENHANCES MACROPHAGE INTERNALIZATION OF PARASITIZED AND UNINFECTED ERYTHROCYTES

Laura Erdman, Kevin C. Kain
University of Toronto, Toronto, ON, Canada
Toll-like receptors (TLRs) are highly conserved innate sensing receptors that activate host defenses upon detection of microbial products. In the context of malaria, Plasmodium falciparum glycosylphosphatidylinositols (PfGPI) have been shown to stimulate macrophage cytokine production via TLR2. In addition to their role in inflammation, TLRs have also been characterized as regulators of phagocytosis. P. falciparum parasitized erythrocytes (PEs) can be non-opsonically internalized by macrophages in a process predominantly mediated by scavenger receptor CD36. Moreover, uninfected erythrocytes (UEs) are rendered susceptible to macrophage clearance during malaria infection due to surface modifications, and this is believed to contribute to the pathogenesis of severe malarial anemia. We hypothesized that stimulation of macrophage TLR2 by PfGPI would enhance innate clearance of PEs as well as malaria-exposed UEs. We first employed a PE model consisting of anti-CD36 antibodies conjugated to human erythrocytes ("anti-CD36 EBABs"). Pre-stimulation of primary human and murine macrophages with PfGPI or a synthetic TLR2 agonist (FSL-1) significantly increased uptake of anti-CD36 EBABs in a TLR2dependent manner. Internalization of P. falciparum PEs was similarly enhanced. Fc-mediated phagocytosis of IgG-opsonized PEs was modestly increased by TLR2 activation. Notably, stimulation of macrophage TLR2 enhanced phagocytosis of UEs isolated from P. falciparum culture. Thus, in this in vitro system, TLR2-mediated macrophage activation enhanced clearance of both P. falciparum PEs and malaria-exposed UEs. These data underscore the complexity of the role of TLRs in malaria infection: TLRenhanced phagocytosis may benefit infected individuals by decreasing parasite burden, but in other contexts may predispose to severe malarial anemia by enhancing UE destruction. Therapeutic targeting of TLR pathways in malaria must be carefully considered.

1201

CONGENITAL CHAGAS DISEASE TRANSMISSION IN SANTA CRUZ, BOLIVIA

Caryn Bern ${ }^{1}$, Maritza Calderon ${ }^{2}$, Carlos LaFuente ${ }^{3}$, Gerson Galdos ${ }^{4}$, Maria del Carmen Abastorflor ${ }^{3}$, Hugo Aparicio ${ }^{5}$, Mark Brady ${ }^{5}$, Lisbeth Ferrufino ${ }^{3}$, Manuela Verastegui', Robert H. Gilman ${ }^{6}$, Cesar Naquira ${ }^{2}$
${ }^{\prime}$ 'Centers for Disease Control and Prevention, Atlanta, GA, United States,
${ }^{2}$ Universidad Peruana Cayetano Heredia, Lima, Peru, ${ }^{3}$ Hospital Universitario Japones, Santa Cruz, Bolivia, ${ }^{4}$ Asociacion Benefica PRISMA, Lima, Philippines, ${ }^{5}$ Asociacion Benefica PRISMA, Lima, Peru, ${ }^{6}$ Johns Hopkins University School of Public Health, Baltimore, MD, United States
Although Santa Cruz city has never had vectorial transmission, Chagas disease prevalence is high due to migration from endemic rural areas. We conducted a study of congenital Chagas disease in a public hospital. From

Nov. 2006 to June 2007, women presenting for delivery were enrolled in serological screening; Trypanosoma cruzi infection was confirmed when specimens were positive by 2 or more serological assays (whole epimastigote and recombinant ELISAs, IFA). Maternal blood specimens were also examined by polymerase chain reaction (PCR) using primers targeting kinetoplast minicircle DNA. For infants of seropositive mothers, we collected cord blood and tissue from the umbilical cord segment proximal to the infant, and peripheral blood specimens at 7, 2130,90 and 180 days of life (or until infection was diagnosed). Infant blood specimens were collected in heparinized microhematocrit tubes, centrifuged, and the buffy coat layer examined for the presence of motile trypomastigotes. Cord blood specimens and umbilical tissue were examined by PCR. Of 530 women, 154 (29\%) had confirmed positive serology results. Infection prevalence rose by quartile of age: 18.4% (13-18 years), 24.2% (19-23 years), 29.3\% (24-29 years) and 46.0\% (30-45 years) (Chi square for trend $23.78, p<0.0001$). Eight infants were found to have congenital T. cruzi infection. Seven were diagnosed by direct examination at 7 (2), 21, 30, 90, 180 and 280 days; no cord blood specimens were positive by direct examination. One infant was diagnosed by serology at 9 months. Seven of 8 infants with confirmed congenital infection had cord blood available for PCR; 5 were positive. Umbilical tissue PCR was positive in 6 of 6 confirmed infected infants. One additional infant whose cord blood specimen was negative by direct examination had positive PCR in cord blood and tissue. Seropositive women with positive PCR were significantly more likely to transmit T. cruzi to their infants than those with negative PCR (8/96 PCRpositive vs 0/57 PCR-negative mothers ($p<0.05$ by 2-tailed Fishers exact test). Infants were treated as soon as infection was confirmed. The rate of congenital transmission has fallen from 10% in the 1980 s to 5% of infants of infected women, consistent with findings of other studies. PCR shows promise for early detection of congenital infection, and to predict which women are at highest risk to transmit T. cruzi to their infants.

1202

DIAGNOSTIC ACCURACY OF LEISHMANIA OLIGOC-TEST FOR THE DIAGNOSIS OF CUTANEOUS LEISHMANIASIS IN PERU

Diego Espinosa ${ }^{1}$, Andrea K. Boggild², Stijn Deborggraeve ${ }^{3}$, Thierry Laurent ${ }^{4}$, Cristian Valencia ${ }^{1}$, César Miranda-Verástegui ${ }^{1}$, Alejandro Llanos-Cuentas¹, Thierry Leclipteux ${ }^{4}$, Jean-Claude Dujardin ${ }^{3}$, Philippe Büscher ${ }^{3}$, Jorge Arévalo ${ }^{1}$
${ }^{1}$ Instituto de Medicina Tropical Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru, ${ }^{2}$ Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, ${ }^{3}$ Department of Parasitology, Institute of Tropical Medicine, Antwerp, Belgium, ${ }^{4}$ Coris BioConcept, Gembloux, Belgium
Molecular methods, such as PCR, have become promising tools for the diagnosis of leishmaniasis, both for their high sensitivity and specificity. However, the practical utility of these techniques is limited by their infrastructural requirements and the expertise needed to conduct them. Recently, a simple and rapid dipstick method for the detection of amplified Leishmania PCR products was developed (Leishmania OligoC-TesT). We estimated the diagnostic accuracy of the Leishmania OligoC-TesT for diagnosis of cutaneous leishmaniasis (CL) on 61 lesions from 45 consecutive patients presenting to the Leishmaniasis Clinic at the Instituto de Medicina Tropical "Alexander von Humboldt", Peru. Lesions were classified as (i) confirmed CL (50 cases), (ii) suspected CL (2 cases) and non CL (9 cases) based on parasitological detection and leishmanin skin test results. The sensitivity of the Leishmania OligoC-TesT was 72.5% and 92% on lesion aspirates and scrapings, respectively. Furthermore, we compared the assay with a conventional PCR targeting the kinetoplast DNA (kDNA) and a significant higher sensitivity (94\%) was observed with the kDNA PCR on the aspirate samples while no significant difference was observed between both methods on the scraping samples (88%). Positive PCR results were observed in the 9 non CL lesions and the role of PCR in CL diagnosis is discussed. Additionally, 4 patients were tested with the OligoC-TesT in a low-equipped rural hospital laboratory located in the Peruvian central jungle. The test results were concordant to the outcome
of the conventional diagnostic procedures but obtained only 5 hours after initial sample taking. The evaluated assay showed clear advantages as a simple and rapid molecular tool for diagnosis of CL in reference laboratories and in near-to-field hospital settings.

1203

EQUIVALENCE STUDY USING REDUCED DOSES OF ANTIMONY PLUS RECOMBINANT HUMAN GM-CSF COMPARED WITH ANTIMONY IN STANDARD DOSES FOR CUTANEOUS LEISHMANIASIS: A RANDOMIZED, DOUBLE BLIND STUDY

Roque P. Almeida¹, Maria Elisa A. Rosa², Josiane S. Carvalho², Julia Ampuero³, Luis Henrique Guimaraes², Paulo R. Machado², Edgar M. Carvalho ${ }^{2}$
${ }^{1}$ Federal University of Sergipe, Aracaju-SE, Brazil, ${ }^{2}$ Federal University of Bahia, Salvador-BA, Brazil, ${ }^{3}$ Federal University of Brasilia, Brasilia-DF, Brazil

The response to recombinant human granulocyte macrophage colony stimulating factor for the treatment of cutaneous leishmaniasis was evaluated. Forty American cuteneous leishmaniasis (ACL) patients with lesions for ≤ 60 days were enrolled in a double-blind-randomized-placebo controlled trial. The test group included 20 patients treated with GMCSF intralesionaly injected (200μ) at enrollment, and one week after, associated with parenteral sodium meglumin antimoniate $(20 \mathrm{mg} / \mathrm{Kg} / \mathrm{d})$ for 10 days. The control group included 20 patients treated with standard antimony ($20 \mathrm{mg} / \mathrm{Kg} / \mathrm{d}$) for 20 days plus saline as placebo. EKG and AST, ALT, urea, creatinine, amylase were performed to evaluate antimony toxicity. The results show that GM-CSF applied intraslesionaly in conjuction to antimony in reduced time, cures cutaneous leishmaniasis patients in a equivalent time as the full regimen treatment with antimony, $91+/-45,69$ versus $90,5+/-53,2$ days, respectively. This study opens the possibility of reducing the treatment of ACL to 10 days which in large population samples might improve adherence to therapy. Moreover, the combined therapy will be important for patients with other conditions that increase the risk of antimony therapy, such as older patients and those with liver, heart and kidney diseases.

1204

A NOVEL AND HIGHLY POTENT CLASS OF COMPOUNDS FOR THE TREATMENT OF TRYPANOSOMIASIS

Richard C. Thompson ${ }^{1}$, Tanya Armstrong ${ }^{1}$, Wayne M. Best ${ }^{2}$, Susan Charman³, Robert Don ${ }^{4}$, Caroline Laverty ${ }^{3}$, Giuseppe Luna², Colette Colette ${ }^{2}$
${ }^{1}$ Murdoch University, Murdoch, Australia, ${ }^{2}$ Epichem Pty Ltd, Murdoch, Australia, ${ }^{3}$ Centre for Drug Candidate Optimisation, Monash University, Melbourne, Australia, ${ }^{4}$ Drugs for Neglected Diseases Initiative, Geneva, Switzerland
It has been known for some time that trifluralin, an herbicide introduced in the 1960s, exhibits a degree of antiprotozoal activity. This compound is non-toxic and inexpensive to produce, making it a potential lead for an antiparasitic drug discovery program. We initially embarked on a project to make a range of trifluralin analogues, and in particular more water soluble analogues, in an attempt to improve the activity of this class of compound to the point where one may have potential as a commercial drug. Our most recent discovery has been what we refer to as the 3rd Generation Analogues. The compounds described are simple to synthesise and cheap to produce. The best of these compounds exhibited a 4,000-fold increase in activity compared to trifluralin. In particular, they have excellent in vitro activity against Trypanosoma rhodesiense (40 nM), T. cruzi (50 nM), and Leishmania donovani (90 nM) and cure T. rhodesiense infections in a validated mouse model when given orally. Several representatives of the class are also Ames negative. This work is being undertaken as an antiparasitic drug discovery program funded by the Drugs for Neglected Diseases initiative.

1205

AN2920, A NOVEL OXABORALE, SHOWS IN VITRO AND IN VIVO ACTIVITY AGAINST TRYPANOSOMA BRUCEI

Yvonne R. Freund ${ }^{1}$, Jacob Plattner¹, Maha Abdulla², James McKerrow ${ }^{2}$, Tana Bowling ${ }^{3}$, Luke Mercer³, Bakela Nare ${ }^{3}$, Steven Wring ${ }^{3}$, Robert Jacobs³, Nigel Yarlett ${ }^{4}$, Cyrus Bacchi ${ }^{4}$, Louis Maes ${ }^{5}$, Robert Don ${ }^{6}$
${ }^{1}$ Anacor Pharmaceuticals, Inc., Palo Alto, CA, United States, ${ }^{2}$ Sandler Center, University of California San Francisco, San Francisco, CA, United States, ${ }^{3}$ Scynexis, Inc., Research Triangle Park, NC, United States, ${ }^{4}$ Haskins Laboratory, Pace University, New York, NY, United States, ${ }^{5}$ University of Antwerp, Antwerp, Belgium, ${ }^{6}$ Drugs for Neglected Diseases initiative, Geneva, Switzerland

Trypanosoma brucei is the causative agent of Human African Trypanosomiasis (HAT) a protozoan disease of sub-Saharan Africa. The WHO estimates that approximately 500,000 people suffer from HAT and existing therapies are either ineffective or toxic. Anacor Pharmaceuticals, Inc has been developing small molecule, boron-containing compounds with anti-microbial activities. A novel compound, AN2920, is part of a series of boron-containing molecules with activity against T. brucei. AN2920 demonstrates in vitro efficacy against T. brucei brucei $\left(\mathrm{IC}_{50}=\right.$ $0.41 \mu \mathrm{M})$ and T. b. rhodesiense ($\mathrm{IC}_{50}=0.53 \mu \mathrm{M}$). No cytotoxicity was observed at 24 hr when assayed using murine L 929 fibroblasts. In a 72hr L929 cytotoxicity assay the $\mathrm{IC}_{50}=30.3 \mu \mathrm{M}$. No significant metabolism was observed by mouse liver microsomes and the half life of the compound, tested for 30 min at $1 \mu \mathrm{M}$ in the presence of microsomes, was >350 min. To test in vivo efficacy of AN2920 in a mouse model, animals were infected with the laboratory strain of T. b. brucei and treated intraperitoneally (IP) for 5 days with $100 \mathrm{mg} / \mathrm{kg}$ of AN2920 twice per day (BID). After 4 weeks, 100\% survival without parasitemia was observed. Efficacy was also observed against T. b. gambiense using this dosing regimen. AN2920 was retested against T. b. brucei at $20 \mathrm{mg} / \mathrm{kg}$ BID, dosing orally and IP. After 30 days, 33% survival was observed for both dosing routes. AN2920 extended the lives of uncured animals by 2-3 fold beyond untreated controls. Taken together, these results suggest that boron-containing small molecules may be novel chemical entities for treatment of HAT.

1206

SCREENING FDA APPROVED DRUGS FOR ACTIVITY AGAINST TRYPANOSOMA CRUZI: LOOKING FOR COMBINATION CHEMOTHERAPY FOR CHAGAS DISEASE

Frederick S. Buckner, Joseph D. Planer
University of Washington, Seattle, WA, United States

Trypanosoma cruzi infection remains an important public health problem in Latin America with more than 12 million individuals chronically infected. Current therapy for Chagas disease consists of nifurtimox or benznidazole; both drugs are poorly tolerated and are not fully effective in the chronic stage of the infection. The cost of new drug development is a major impediment to bringing new chemical entities through preclinical and clinical testing for use against neglected diseases. Thus, we are testing FDA approved drugs for anti-T. cruzi activity, alone and in combinations. A semi-high throughput screening method was employed using mammalian stage T. cruzi grown in murine fibroblast cells with parasite growth quantified by β-galactosidase reporter activity, as reported previously. The Microsource Spectrum collection of 2000 compounds (including >500 FDA approved drugs) was screened in duplicate at a single concentration of $10 \mu \mathrm{M}$. First pass hits included 356 compounds (17.8%) that inhibited growth by $>75 \%$. After excluding compounds that were not drug candidates (alkylating agents, topical drugs, etc.) and were non-toxic to mammalian cells at $10 \mu \mathrm{M}$, we had a list of 148 compounds (7.4%). Additional testing showed most of these compounds with IC_{50} activity in the range of 1-10 $\mu \mathrm{M}$ and five compounds with submicromolar activity. The active compounds $\left(\mathrm{IC}_{50}<10 \mu \mathrm{M}\right)$ fell into a variety of classes including
antihistamines, selective serotonin reuptake inhibitors, benzodiazepines, tricyclics, and antibiotics. The lab is currently testing combinations of these compounds (with each other and with established anti-T. cruzi inhibitors) to search for synergistic combinations. Active combinations will be studied in the murine Chagas disease model to validate the approach of using off-the-shelf compounds for combating a neglected parasitic disease.

1207

ANTILEISHMANIAL ACTIVITY OF SELECTED FDA-APPROVED DRUGS IN A MURINE CUTANEOUS LEISHMANIASIS MODEL

David Saunders, Qiqui Li, Carlson Misty, Lisa Xie, Qiang Zheng, Jing Zhang, Juan Mendez, John Tally, Alan Magill, Grogl Max, Suping Jiang, Peter Weina
Walter Reed Army Institute of Research, Silver Spring, MD, United States
Current therapeutic options licensed in the U.S. for cutaneous leishmaniasis (CL) are extremely limited. Current intravenous therapies, such as sodium stibogluconate have considerable associated toxicities, and are suboptimal means of treating a self-limited skin disease, albeit a potentially debilitating one. Oral azoles have shown modest efficacy in limited settings. The limited local therapies available are generally suitable only for uncomplicated lesions. There is a need for a safe oral drug for CL. We recently presented a large scale effort to screen already FDA-approved drugs for in vitro activity against Leishmania major, using infected macrophages. To date 1100 drugs have been screened in vitro. We established an L. major-infected BALB/C screening model to test drugs with potent in vivo activity (IC_{50} less than $10 \mathrm{mcg} / \mathrm{mL}$). Candidate drugs were first subjected to a rigorous decision matrix to determine suitability for 2-4 weeks of continuous oral therapy, favorable pharmacokinetics, and prior testing in vivo or in humans. Drug screening is currently ongoing. We will report on the results of the top 5-10 candidate drugs in the in vivo mouse model. Most of the active substances belong to categories of fungicides, antibiotics, anti-asthmatics, antiprotozoals and antidepressants. The intent of our strategy is to accelerate the process of antileishmanial drug development with reduced cost and shortened timelines.

1208

ROLE OF RED CELL COMPLEMENT REGULATORY PROTEINS IN ERYTHROPHAGOCYTOSIS DURING PLASMODIUM CHABAUDI INFECTION

Juliana V. Harris ${ }^{1}$, Catherine N. Stracener ${ }^{1}$, Xiaobo Wu², Dirk Spitzer², John P. Atkinson², José A. Stoute ${ }^{1}$
${ }^{1}$ Uniformed Services University, Bethesda, MD, United States, ${ }^{2}$ Washington University, St. Louis, MO, United States
Plasmodium falciparum malaria accounts for 1-2 million deaths per year, with the majority due to complications such as severe anemia. The pathogenesis of this anemia is not completely understood and cannot be explained solely by the direct destruction of red cells by the parasite. Red cells of children with severe anemia and malaria are deficient in the complement regulatory proteins (CRPs) decay accelerating factor (DAF/CD55) and complement receptor 1 (CR1/CD35). In order to understand the significance of these deficiencies we studied the role of the mouse complement receptor 1 related protein Y (Crry) in red cell protection during infection with P. chabaudi. We hypothesized that Crry heterozygous knockout mice (Crry ${ }^{+ \text {- }}$) infected with P. chabaudi would have more severe anemia than wild-type mice. There were no differences in anemia between knockout and wild-type animals due to compensatory extramedullary hematopoiesis. However, P. chabaudiinfected Crry^{+} mice showed increased erythrophagocytosis compared to wild-type animals, suggesting that complement activation is an important mechanism in this phenomenon. Erythrophagocytosis of uninfected red cells may be important in the development of anemia, as it is a common finding in tissues of malaria-infected patients and animals. Therefore, we are investigating the role of complement in erythrophagocytosis by quantitating C3 deposition on red cells using immunohistochemistry and
by use of complement inhibitors to reverse erythrophagocytosis. Results of these studies will reveal potential therapeutic strategies to diminish uninfected red cell destruction during malaria infection in humans.

1209

ATP DEPLETION OF RED BLOOD CELLS RECAPITULATES THE PHENOTYPE ASSOCIATED WITH PYRUVATE KINASE DEFICIENCY AND PROTECTS AGAINST PLASMODIUM FALCIPARUM MALARIA

Kodjo Ayi ${ }^{1}$, Conrad W. Conrad ${ }^{2}$, Kevin C. Kain ${ }^{3}$
${ }^{1}$ Tropical Disease Unit, McLaughlin-Rotman Centre for Global Health, University of Toronto, Toronto, ON, Canada, ${ }^{2}$ Tropical Disease Unit, McLaughlin-Rotman Centre for Global Health and Molecular Medicine; Institute of Medical Sciences, Toronto, ON, Canada, ${ }^{3}$ Tropical Disease Unit, McLaughlin-Rotman Centre for Global Health and Molecular Medicine; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada

The protective effect of pyruvate kinase deficient (PKD) erythrocytes in Plasmodium falciparum infection has been demonstrated. There is inhibition of merozoite invasion into PKD erythrocytes, as well as increased phagocytosis of PKD erythrocytes infected with early stages of P. falciparum infection. PK deficiency arises from a number of different mutations in the $P K L R$ gene leading to impaired enzyme activity. In agreement with previous reports, we found reduced levels of ATP in PKD homozygous erythrocytes compared to normal erythrocytes ($31 \pm 14 \%$), as well as in PKD heterozygous erythrocytes ($64 \pm 7 \%$). The inhibition of glycolysis at the level of enolase by fluoride has been used as a model system for inherited erythrocyte pyruvate kinase deficiency. Using normal erythrocytes treated with sodium fluoride at different concentrations, we show that there is a correlation between ATP levels and inhibition of parasite invasion and enhanced phagocytosis of ring-forms. We further observed increased levels of ATP in parasitized PKD erythrocytes and fluoride treated erythrocytes compared to the parasitized normal, G6PD deficient and β-thalassemia erythrocytes. These data suggest that the chemical conversion of normal erythrocytes to reduced-level-ATP erythrocytes will facilitate the investigation of the mechanism of protection of PKD erythrocytes against P. falciparum.

1210

AFM STUDY OF THE EXTRACELLULAR AND THE CYTOPLASMIC SURFACES OF PLASMODIUM FALCIPARUM INFECTED ERYTHROCYTE MEMBRANES

Hui Shi, Ang Li, Jing Yin, Kavin Tan, Chwee Teck Lim National University of Singapore, Singapore, Singapore
Infection of human erythrocytes by the protozoan Plasmodium falciparum results in dramatic morphological and functional changes of host cells. During the process of maturation, parasites export parasite-expressed proteins, such as PfEMP1 and KHARP, to the host cell membrane thus forming knobs on the host cell surface and thereby stiffening the membrane and causing cytoadherence (cell stickiness) to occur. To investigate the formation of knobs as well as the relationship between knobs and the host cell cytoskeleton, atomic force microscopy (AFM) was used to study both the extracellular and the cytoplasmic surfaces of infected erythrocyte membranes. Although the cytoskeletal structure can be observed from both the extracellular surface and cytoplasmic surface, the AFM images of cytoplasmic surface uncovered more details of the spectrin network. Knobs and their connections or linkages to the spectrin network were clearly observed from the cytoplasmic surface of infected erythrocytes. The size and distribution of knobs viewed from the cytoplasmic surface were similar to those observed from the extracellular surface. While the spectrin network seems quite intact during the trophozoite stage, some breakages of the cytoskeleton are detected at the schizont stage. Furthermore, some internal structures such as transport vesicles, parasite-generated membrane system as well as parasites at the trophozoite stage were also imaged using AFM. Finally, numerous
super-sticky submicrometer crystals were also observed to adhere to the inner surface of the membrane at the schizont stage. This study may help to further understand the internal changes undergone by the host erythrocytes during parasite maturation.

1211

IDENTIFICATION OF A NOVEL FAMILY OF VARIANT SURFACE ANTIGENS IN PLASMODIUM FALCIPARUM

Amanda K. Lukens ${ }^{1}$, Daniel E. Neafsey², Stephen F. Schaffner², Daniel J. Park², Philip Montgomery², Sarah K. Volkman¹, Pardis C. Sabeti², Danny A. Milner, Jr. ${ }^{1}$, Johanna P. Daily ${ }^{1}$, Ousmane Sarr³, Daouda Ndiaye³, Omar Ndir³, Soulyemane Mboup³, Nicole StangeThomann², Roger C. Wiegand², Bruce W. Birren², Daniel L. Hartl4, James E. Galagan², Eric S. Lander², Dyann F. Wirth¹
${ }^{1}$ Harvard School of Public Health, Boston, MA, United States, ${ }^{2}$ The Broad Institute of MIT and Harvard, Cambridge, MA, United States, ${ }^{3}$ Cheikh Anta Diop University, Dakar, Senegal, ${ }^{4}$ Harvard University, Cambridge, MA, United States
Plasmodium falciparum variantly expressed surface antigens (VSA) have been proposed as an escape mechanism from the host immune response giving rise to persistent infections in humans. With a portion of the genome still uncharacterized, we sought a means to identify novel VSA that might play a role in pathogenesis. We hypothesized that nucleotide diversity, variant expression, and presence of the Pexel motif could be used to filter the genome into a testable set of candidate VSA. We identified over 93,000 high confidence SNPs across the genome. Most genes demonstrate low pairwise nucleotide diversity (π), with 85% of the genome having a π value less than 2.0×10^{-3}. To identify novel antigens, we focused on the top 5\% of highly diverse genes and further evaluated the 3D7 transcriptome and a set of five patient transcriptomes to identify variantly expressed genes. To discriminate genes that are exported to the surface of the infected red blood cell, we also factored the presence of the Pexel motif into our analysis. Candidates that fulfilled our filter criteria could be divided into two groups: a large number of known antigens, and a handful of uncharacterized genes. One small paralogous gene family demonstrated significantly higher nucleotide diversity than other Pexel containing genes, which is consistent with the prediction that they represent a novel family of VSAs. Steady-state transcriptome analysis indicates that these genes are expressed across different parasite lines and are generally up-regulated in vivo. To test their antigenicity, we have expressed recombinant protein from these genes and tested their reactivity with antibodies in patient plasma samples from immune patient volunteers from Senegal. Preliminary analysis shows that these proteins are variantly recognized in different immune patient samples, supporting our hypothesis that they are variant antigens. We are also determining the cellular localization of these gene products. Nucleotide diversity, along with other bioinformatic parameters, represent a powerful tool for identifying novel genes involved in pathogenesis and predict new targets for vaccine development in various infectious diseases.

1212

CHARACTERIZATION OF NATURALLY ACQUIRED ANTIBODIES TO PFRH DOMAINS AND DETERMINATION OF THEIR FUNCTIONAL INHIBITORY ACTIVITY

Ambroise D. Ahouidi ${ }^{1}$, Amy K. Bei², Ousmane Sarr¹, Daouda Ndiaye ${ }^{1}$, Omar Ndir¹, Dyann Wirth², Souleymane Mboup ${ }^{1}$, Manoj T. Duraisingh ${ }^{2}$
${ }^{1}$ Le Dantec Hospital and Cheikh Anta Diop, Dakar, Senegal, ${ }^{2}$ Harvard School of Public Health, Boston, MA, United States

Field studies conducted in malaria-endemic areas contribute to our understanding of naturally acquired immunity to malaria and also aid in identifying potential candidate molecules to select for a vaccine. The invasion of erythrocytes by Plasmodium falciparum occurs through multiple receptor-ligand interactions. Members of the PfRh protein
family play a critical role in directing P. falciparum parasites to alternative receptors for invasion. These proteins localize to the merozoite surface and are exposed to the blood stream during the process of invasion; however, they remain unstudied for their contribution to the humoral immune response against Plasmodium. This study investigates whether plasma from malaria infected individuals in Senegal contains antibodies against domains within the PfRh proteins but also assesses the inhibitory activity of these antibodies with respect to invasion. Sera were collected from malaria infected patients from different areas in Senegal with different endemicities over a period of 4 years $(n=539)$. Total lgG to recombinant antigens representing the unique domains of the PfRh paralogs, PfRh1, PfRh2a, PfRh2b and PfRh4, were determined by ELISA. Immune reactivity in this population to PfRh2a and PfRh2b was significantly greater (40.8\% and 16.1% respectively) compared to PfRh4 and PfRh1 (5.1\% and 3.4\% respectively). Of positive IgG responses, we have determined IgG subclass and find that $\operatorname{lgG} 1$ and $\operatorname{lgG} 3$ are predominant. We are determining associations between IgG subclass and age, parasite density, seasonally and sequence polymorphisms. We have also determined immune responses to specific C-terminal regions that distinguish PfRh2a and PfRh2b. In addition to IgG titer we also address the potential inhibitory activity of these antibodies using P. falciparum knockout strains lacking PfRh ligands. We are currently performing invasion assays using these parasite lines in the presence of purified IgG in which non-specific inhibitory factors had been removed. The presence of a humoral response to the PfRh proteins together with invasion inhibitory potential will validate these proteins as potential vaccine candidate antigens.

1213

GENOTYPIC DIFFERENCES IN PLASMODIUM FALCIPARUM FROM DIFFERENT MALARIAL DISEASE STATES IN CHILDREN FROM UGANDA

David M. Menge ${ }^{1}$, Robert O. Opoka², Chandy C. John³
${ }^{1}$ Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, MN, United States, ${ }^{2}$ Department of Paediatrics and Child Health, Makerere University Medical School and Mulago Hospital, Kampala, Uganda, ${ }^{3}$ Global Pediatrics Program, University of Minnesota, Minneapolis, MN, United States
Plasmodium falciparum infection leads to widely different clinical conditions in children ranging from cerebral malaria (CM), severe malarial anemia (SMA), uncomplicated malaria (UM) and asymptomatic parasitemia (AP). Studies on parasite and human genetics may help in determining the molecular basis of the diversity of clinical outcomes. We used polymorphic merozoite surface protein 1 and 2 (MSP-1 and 2) and glutamate rich protein (GLURP) DNA markers to genotype P. falciparum parasites collected from children with CM, UM and AP from Uganda. In total 94, 88 and 65 samples from children with CM, UM and AP respectively were assayed. Differences in the frequencies of parasite genotypes of P. falciparum parasites between $C M, ~ U M$ and AP were determined by χ^{2} tests. Frequencies of one or more alleles from the MSP-1 RO33 and MAD20, MSP-2 FC27 or GLURP allelic families did not differ between children with CM, UM or AP. Children with CM or UM were more likely to have one or more MSP-1 K1 alleles than children with AP (97.8 \% vs $83.1 \%, \mathrm{P}=$ 0.002 , and 98.9% vs $83.1 \%, P=0.005$, respectively), but children with CM and UM did not differ in MSP-1 K1 allele frequency. Children with CM were also more likely to have one or more MSP2-3D7 alleles than children with AP (92.2% vs $75.4 \%, \mathrm{P}=0.03$), but in addition, children with CM were more likely to have one or more MSP-2 3D7 alleles than children with UM (92.6% vs $80.7 \%, P=0.02$). These study results suggest that MSP2-3D7 genotypes may be overrepresented in children with CM as compared to uncomplicated malaria or asymptomatic parasitemia. This may relate to functional differences conferred by this genotype or to the association of this genotype with an unrelated genetic factors. Analysis with microsatellite markers may allow further characterization of strains associated with increased disease severity. Insight into the structural and functional diversity of genes associated with virulence could reveal new strategies for intervention of malarial disease.

1214

ABO POLYMORPHISM AND PLASMODIUM FALCIPARUM MALARIA

Kayla T. Wolofsky ${ }^{1}$, Kodjo Ayi², Conrad W. Liles³, Christine M. Cserti-Gazdewich ${ }^{4}$, Kevin C. Kain ${ }^{5}$
'McLaughlin-Rotman Centre for Global Health; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada, ${ }^{2}$ Tropical Disease Unit, McLaughlin-Rotman Centre for Global Health, University of Toronto, Toronto, ON, Canada, ${ }^{3}$ Tropical Disease Unit, McLaughlin-Rotman Centre for Global Health and Molecular Medicine;Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada, ${ }^{4}$ Blood Transfusion Laboratory, Toronto General Hospital; Department of Laboratory Hematology, University of Toronto, Toronto, ON, Canada, ${ }^{5}$ Tropical Disease Unit, McLaughlin-Rotman Centre for Global Health and Molecular Medicine; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
Malaria has been a major selective force on red blood cell (RBC) polymorphisms that confer protection to severe disease. Several lines of evidence suggest that the outcome of Plasmodium falciparum infection may also be influenced by ABO blood group antigens. Blood type O predominates in malaria endemic regions and has been associated with protection from developing severe and complicated malaria. Although the molecular details of protection has not been fully elucidated, previous studies have demonstrated reduced rosetting in type O RBCs. Based on observations showing enhanced phagocytosis of infected RBCs occurs with other RBC polymorphisms associated with protection, we hypothesized that infected type O RBCs may be more efficiently cleared by the innate immune clearance than type A RBCS. Here we show that primary human macrophages phagocytosed P. falciparum- infected type O RBCs more avidly than infected type A RBCs ($\mathrm{p}<0.001$). Furthermore, that hemichrome deposition in infected type O RBCs is significantly greater than in infected type A RBCs ($\mathrm{p}<0.05$), which may account for enhanced recognition and phagocytosis of type O infected RBCs. Collectively our data suggest that type O individuals may have more proficient clearance of infected RBCs contributing to an overall decrease in parasite burden and a reduction of the number of infected erythrocytes available to bind within the microvascular beds of vital organs. This represents an additional putative mechanism by which blood type O may contribute to protection against severe malaria.

1215

MOLECULAR CHARACTERISATION OF PYRETHROID RESISTANCE IN ANOPHELES FUNESTUS, MALARIA VECTOR IN AFRICA

Charles Wondji¹, John Morgan ${ }^{1}$, Helen Irving ${ }^{1}$, Maureen Coetzee², Hilary Ranson ${ }^{1}$, Janet Hemingway ${ }^{1}$
${ }^{1}$ Liverpool School of Tropical Medicine, Liverpool, United Kingdom, ${ }^{2}$ Vector Control Reference Unit, National Institute for Communicable Diseases, NHLS, Johannesburg, South Africa
A major QTL rp1 conferring pyrethroid resistance to the malaria vector Anopheles funestus, was previously identified. Here we present a finescale mapping of rp1, the identification and characterisation of the genes conferring this resistance. $650 \mathrm{F6}$ and 88 individuals from reciprocal crosses between susceptible and resistant strains were genotyped with SNPs and microsatellite markers for QTL mapping. A BAC clone containing rp1 was sequenced and annotated. Quantitative PCR were carried out to study the expression pattern of the P450s genes and the in vitro interaction of the genes differentially expressed with pyrethroids was assessed. rp1 was the major QTL explaining 85% of the genetic variance to pyrethroid resistance. Two other QTLs of minor effect rp2 and $r p 3$ were detected. Fifteen genes were identified in the 120 kb BAC clone containing the rp1 QTL with a cluster of 10 P450 genes among which CYP6P9 and CYP6P4 were duplicated. These two genes were significantly differentially expressed between susceptible and resistant strains. Enzymes from these genes metabolise pyrethroid in vitro. Specific mutations associated with
resistance were identified in CYP6P9 and CYP6P4. For each gene, two A/G SNPs were identified and genotyped for over 650 specimens. The G/G genotypes confer resistance at 100% and these could be used to design of a diagnostic assay to detect this metabolic resistance. In conclusion, CYP6P9 and CYP6P4 are the main genes conferring pyrethroid resistance in the laboratory strain FUMOZ-R. Further studies will be carried out to estimate their contribution in the pyrethroid resistance in field populations.

1216

TOXICITY OF HIGHLY SELECTIVE CARBAMATES TOWARDS THE MALARIA MOSQUITO, ANOPHELES GAMBIAE

James M. Mutunga, Troy D. Anderson, Bryan T. Jackson, Joshua A. Hartsel, Sally L. Paulson, Paul R. Carlier, Jeffrey R. Bloomquist Virginia Tech, Blacksburg, VA, United States
Insecticide-treated bednets (ITNs) are an important tool for the management of Anopheles gambiae, the major vector of malaria in Africa. Pyrethroids are the only insecticides approved for bednet treatments; however, widespread resistance and lack of alternative chemicals undermine the use of ITNs for mosquito control. Our research focus is to develop highly selective insecticides with high mosquito toxicity and low mammalian toxicity that might be used in parallel with current-use pyrethroids. We report the re-engineering of carbamate insecticides to increase selectivity and mitigate resistance development in An. gambiae. Based on mosquito acetylcholinesterase (AChE) protein homology modeling, we have synthesized new carbamates that are highly selective to An. gambiae AChE. Anticholinesterase activities of each carbamate were evaluated for both human and mosquito AChEs and compared to those of propoxur (WHO standard for mosquito control), and other conventional carbamate insecticides. We demonstrate novel carbamates of greater selectivity (ca. > 8000-fold) towards An. gambiae AChE, compared to 3 -fold selectivity with propoxur. The new carbamates have increased potency towards mosquitoes (ca. 60 -fold) than that of propoxur. We confirm both intrinsic and contact mosquito toxicity of these carbamates and demonstrate comparable toxicities to that of propoxur, and other conventional carbamates. With such high levels of selectivity, potency and toxicity, these novel carbamates provide valuable leads to developing of alternative mosquitocides for use in insecticide treated bednets and indoor residual sprays. Our findings are important in the search for new mosquito selective-insecticides and the possible use of these carbamates in malaria control programs will be discussed.

1217

COMBINING ORGANOPHOSPHATES AND REPELLENTS ON FABRICS: A PROMISING STRATEGY TO BETTER CONTROL PYRETHROID RESISTANT MOSQUITOES

Cédric Pennetier ${ }^{1}$, Costantini Carlo², Chabi Joseph ${ }^{3}$, Dabiré Rock ${ }^{4}$, Corbel Vincent ${ }^{1}$, Lapied Bruno ${ }^{5}$, Pagès Frédéric ${ }^{6}$, Hougard Jean-Marc ${ }^{3}$
${ }^{1}$ Institut de Recherche pour le Développement, Montpellier, France, ${ }^{2}$ Institut de Recherche pour le Développement, Bobo-Dioulasso, Burkina Faso, ${ }^{3 /}$ nstitut de Recherche pour le Développement, Cotonou, Benin, ${ }^{4}$ Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso, ${ }^{5}$ Université d'Angers, Angers, France, ${ }^{6}$ Institut de Médecine Tropicale du service de Santé des Armées, Marseille, France

With the spread of pyrethroid resistance in most mosquito vector species and the lack of alternative compounds for public health, the search for new strategies that provide better control of resistant populations has become a priority. A new concept was developed in the laboratory by mixing repellents and non pyrethroid insecticides. Here, this concept was studied for personal and community protection under field conditions in Benin and Burkina Faso, West Africa. Indeed we studied the efficacy of battle-dress and bed nets impregnated with organophosphate(PM)/ repellent(DEET or KBR) mixtures, respectively against Aedes aegypti, the main dengue and yellow fever vector and Anopheles gambiae, the main
malaria vector, First, KBR and PM+KBR impregnated battle-dress allowed better protection against $A e$. aegypti bites than permethrin impregnated battle-dress. Secondly, results showed evidence of synergism between repellents (DEET or KBR) and pyrimiphos-methyl (PM) on nets in field conditions. PM+DEET and PM+KBR treated nets were as effective as a standard pyrethroid (deltamethrin $25 \mathrm{mg} / \mathrm{m}^{2}$) against susceptible An. gambiae populations and more effective against resistant An. gambiae populations. Results also demonstrated that mixtures did select neither $K d r$ allele nor $A c E 1^{R}$ allele. In conclusion, hese field trials showed that mixing repellents and organophosphates has the potential to be a good alternative strategy to manage the spread of resistance. However, significant improvements remain to be done to improve residual effect of Insecticide-Repellent Treated fabrics.

1218

DEVELOPMENT OF A NOVEL FORMULATION FOR USE IN INDOOR RESIDUAL SPRAY PROGRAMS

John R. Lucas ${ }^{1}$, Takaaki Itoh², Yoshinori Shono², Luc Djogbénou³, Jean-Marc Hougard ${ }^{3}$
${ }^{1}$ Sumitomo Chemical Co. (UK) Plc, London, United Kingdom, ${ }^{2}$ Sumitomo Chemical Co., Ltd., Environmental Health Division, Tokyo, Japan, ${ }^{3}$ Centre de Recherches Entomologiques de Cotonou (CREC), Cotonou, Benin
Fenitrothion wettable powder (WP) is recommended by the World Health Organization (WHO) for Indoor Residual Spraying (IRS) against malaria vectors. However, with the increase in the use of Long Lasting Insecticidal Nets (LLINs) as a low cost and highly effective intervention, IRS has more recently been used in many parts of Africa as a secondary treatment option, or for use in epidemic zones. In some instances, particularly in highly malarious areas, the use of LLINs and IRS together can give very dramatic reductions in incidence. With the focus now turning towards the elimination or eradication rather than control of malaria, the combination of several vector control interventions combined with the administration of effective anti- malarial drugs will become the norm as countries step up their efforts to eliminate this parasite. There is an increasing concern over the development of resistance to pyrethroids, possibly affecting LLIN performance, which are currently all dependent on this insecticide class. To minimize selection pressure the use of pyrethroid-based IRS products is not recommended with LLIN applications. Alternatives to the widespread use of pyrethroid and DDT-based IRS products are clearly needed (kdr resistant insects share a common resistance mechanism to DDT and pyrethroids). To meet this need, a novel Sumithion ${ }^{\circledR}$ IRS formulation is being developed. Laboratory trials to evaluate residual efficacy on a range of representative substrate types against Anopheles mosquitoes have been conducted. This data, along with interim results of Phase II hut studies being conducted in Benin are presented.

1219

HUMAN ANTIBODY RESPONSE TO ANOPHELES GAMBIAE SALIVA: A NEW IMMUNO-EPIDEMIOLOGICAL MARKER TO EVALUATE THE EFFECTIVENESS OF INSECTICIDES TREATED NETS (ITNS)?

Papa Makhtar Drame ${ }^{1}$, Anne Poinsignon², Patrick Besnard³, Sylvie Cornélie ${ }^{2}$, Vincent Foumane ${ }^{4}$, Cheikh Saya Sow ${ }^{1}$, Jacques Le Mire ${ }^{5}$, Filomena Fortes ${ }^{6}$, Denis Boulanger ${ }^{2}$, Pierre Carnevale ${ }^{2}$, Francois Simondon ${ }^{2}$, Franck Remoue ${ }^{1}$
${ }^{1}$ Institut de Recherche pour le Developpement, Dakar, Senegal, ${ }^{2}$ Institut de Recherche pour le Developpement, Montpellier, France, ${ }^{3}$ Service Médical Sonamet, Lobito, Angola, ${ }^{4}$ Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon, ${ }^{5}$ Service Médical Clinique Sonamet, Lobito, Angola, ${ }^{6}$ Malaria Control Program, Luanda, Angola
In a way to improve malaria control, many efforts are conducted under WHO recommendations to develop new tool/indicator for malaria control, such as for evaluating the anti-vector strategies. Previous studies
have shown that the evaluation of human antibody (Ab) response to arthropod salivary proteins represent an epidemiological indicator of exposure to vector bites, and especially our team demonstrated that IgG response to whole saliva of Anopheles gambiae in exposed individuals represent a marker of the intensity of Anopheles exposure. The objective of the present study was to validate whether this immunological marker based on human anti-saliva IgG Ab levels could be one new indicator to evaluate the effectiveness of ITNs use in malaria control programs. One longitudinal study, concerning individuals ($n=108$, children and adults) living in malaria endemic area in Angola, was performed from March 2005 to October 2006. The studied cohort was followed for parasitological, clinical, entomological and immunological data, each 6 weeks before and after the well-controlled use of Permanet ${ }^{\circledR}$ mosquito nets (Long Lasting Insecticide Net; installation in Feb. 2006). Seasonal variations of anti-saliva IgG Ab levels to An. gambiae saliva were observed before and after the installation of ITNs which appeared to be associated with the exposure to An. gambiae (evaluated by the classical entomological methods) and the prevalence/intensity of malaria infection. Moreover, a significant decrease of the anti-saliva IgG response was observed after the ITNs use which was correlated with the decrease of malaria parasitemia, the current and referent criteria showing the effectiveness of these ITNs. In a way to identify new tools for malaria control, we have shown that antisaliva IgG response in exposed individuals could be not only an immunoepidemiological marker of exposure to An. gambiae bites, but also a potential indicator for evaluating the ITNs effectiveness. Several future studies are needed to confirm this hypothesis in other transmission areas and to identify some immunogenic salivary proteins as higher specific markers. Nevertheless, this study represents a first approach to elaborate such new indicators for evaluating the effectiveness of anti-vector strategies, bases on the evaluation of human $A b$ response to salivary proteins of arthropod vectors.

1220

EFFICACY OF INSECTICIDE TREATED MATERIALS (ITMS) FOR DENGUE CONTROL IN LATIN AMERICA AND ASIA: CLUSTER RANDOMIZED CONTROLLED TRIALS IN VENEZUELA AND THAILAND

Audrey Lenhart ${ }^{1}$, Elci Villegas², Carmen Elena Castillo², Yuwadee Trongtokit ${ }^{3}$, Chamnarn Apiwathnasorn³, Neal Alexander ${ }^{4}$, Philip J. McCall ${ }^{1}$
'Liverpool School of Tropical Medicine, Liverpool, United Kingdom, ${ }^{2}$ Universidad de los Andes, Trujillo, Venezuela, ${ }^{3}$ Mahidol University, Bangkok, Thailand, "London School of Hygiene and Tropical Medicine, London, United Kingdom
Dengue fever is the fastest spreading arboviral disease worldwide. In the absence of a vaccine, Aedes aegypti vector control remains the most effective strategy to prevent dengue transmission. Our initial studies in Latin America indicated that insecticide treated materials (ITMs) can impact on dengue vector populations and potentially on dengue virus transmission. Cluster randomized trials are underway in Venezuela (6000 households in 75 clusters) and Thailand (2000 households in 26 clusters) to further clarify the efficacy of ITMs in suppressing dengue vector populations. These trials incorporate several advances on the earlier studies: first, different types of ITMs are being tested alone and in combination and householders may choose the manner of deployment; secondly, spill-over effects of the interventions into neighboring control areas are monitored by including external control sites; thirdly, efficacy of ITMs for dengue vector control is measured on a large scale for the first time in SE Asia. Both study sites had high entomological indices at baseline (Venezuela average pupae per person index $=0.52$, average Breteau index $=15.3$; Thailand average pupae per person index $=0.22$, average Breteau index $=22.4$), and the ITM interventions were adopted and maintained by the population in both sites to a similar extent, although their manner of deployment varied (Venezuela: window curtains and jar covers; Thailand: indoor and window curtains). Although the trials are set to complete in early 2009, preliminary data and analyses will be presented and important
differences affecting the potential applicability of ITM use in Venezuela and Thailand will be discussed.

1221

REDUCED EFFICACY OF PYRETHROID SPACE SPRAYS FOR DENGUE CONTROL IN PYRETHROID RESISTANCE AREA (MARTINIQUE)

Sebastien Marcombe ${ }^{1}$, Alexandre Carron², Frédéric Darriet¹, Manuel Etienne Etienne³, Michel Tolosa Tolosa², Marie-Michèle YpTcha³, Christophe Lagneau ${ }^{2}$, André Yébakima ${ }^{1}$, Vincent Corbel ${ }^{1}$
${ }^{1}$ Institut de Recherche pour le Développement, Montpellier, France,
${ }^{2}$ Entente Interdépartementale pour la Démoustication du littoral méditerranéen (EID Meditérranée), Montpellier, France, ${ }^{3}$ Centre de Démoustication, Fort de France, Martinique
The last 30 years saw a dramatic resurgence of several infectious diseases like Dengue fever and Chikungunya causing major public health problems. Unfortunately, vector control remains extremely difficult to implement because it requires a large budget, skilled staff, commitment, and active community participation. To reduce the infection rate during epidemics, space spraying is the only solution for adult mosquito control. In the Caribbean, insecticide resistance is widely developed in Aedes aegypti and may represent a serious obstacle for dengue vector control. In this context, the efficacy of pyrethroid and organophosphate ULV-space sprays was investigated in Martinique (French West Indies) where Ae. aegypti previously shown to be resistant to conventional insecticides. WHO cylinder tests showed high level of resistance of a wild-field caught population of Ae. Aegypti to deltamethrin $\left(\mathrm{RR}_{95}=68\right)$ and, in a lesser extend, to pyrethrum $\left(R R_{95}=14\right)$ and naled $\left(R R_{95}=12\right)$ compared to the susceptible reference strain. A simulated field trial implemented in this locality showed that this resistance can strongly reduce the knockdown effect and mortality of deltamethrin ($1 \mathrm{~g} / \mathrm{ha}$) and synergized pyrethrins ($10 \mathrm{~g} / \mathrm{ha}$) applied by thermal fogging. The mortality rates of all pyrethroids were below 60% at 20 m and then dropped below 30% at 30 m . Conversely, the efficacy of naled ($114 \mathrm{~g} / \mathrm{ha}$) was high against both susceptible and resistant mosquitoes, i.e. mortality and KD effect were above 75% until 50 m . This finding has important implications for dengue vector control and emphasizes the need to develop innovative tools and strategies to maintain effective control of multi resistant Ae. aegypti populations.

1222

FATAL OUTBREAK FROM CONSUMING XANTHIUM STRUMARIUM SEEDLINGS DURING TIME OF FOOD SCARCITY IN NORTHEASTERN BANGLADESH

Emily S. Gurley ${ }^{1}$, Mahmudur Rahman², M. Jahangir Hossain¹, Nazmun Nahar¹, Be-Nazir Ahmed², Rebeca Sultana¹, Selina Khatun², M. Sabbir Haider², M. Saiful Islam¹, Utpal K. Mondal¹, Stephen P. Luby ${ }^{1}$
${ }^{1}$ International Center for Diarrhoeal Disease Research, B, Dhaka, Bangladesh, ${ }^{2} I E D C R$, Ministry of Health and Family Welfare, Dhaka, Bangladesh
In November 2007 a cluster of deaths was identified at a government hospital in northeastern Bangladesh. Patients presented with unconsciousness, elevated liver enzymes, and a history of repeated vomiting and restlessness. We investigated this outbreak in order to describe the clinical syndrome and determine etiology and risk factors for disease. We defined suspect cases as those experiencing vomiting and probable cases as vomiting and altered mental status in the outbreak areas from 2 to 11 November. We identified cases at hospitals and by house-to-house visits. In-depth interviews detailed illness histories and generated hypotheses about the etiology of disease. We conducted a cohort study in two villages to investigate risk factors for developing vomiting and unconsciousness, with a focus on foods consumed. In total, 81 patients were identified from 11 villages; 24\% (19/81)
died. Cases resided in remote areas and were poor; many villagers reported eating only two meals per day. In-depth interviews with 33 cases showed that 31 (94\%) had consumed ghagra shak, or cocklebur (Xanthim strumarium) in the hours before illness onset. Mature ghagra shak plants are usually consumed in these villages in small amounts to flavor foods or for medicinal purposes. However, due to severe and late flooding in 2007, villagers relied more upon uncultivated foods such as ghagra shak, and consumed very young plants. Persons who ate this plant were 28.9 ($95 \% \mathrm{Cl} 9.2$ to $90.8, \mathrm{P}<0.001$) times more likely than others to develop vomiting and unconsciousness during the outbreak. Consuming X. strumarium has caused similar illness and death in livestock and children in other parts of the world. The toxic agent in the plant is carboxyatroglicoside, which is found in the seeds and seedlings. Messages advising against consuming seedlings should be communicated broadly across the country and communities at risk for food scarcity should be targeted for food relief. This outbreak provides further example of how poverty and the lack of food security imperils lives.

1223

EFFECT OF READY-TO-USE-THERAPEUTIC FOOD SUPPLEMENTATION ON THE NUTRITIONAL STATUS, MORTALITY AND MORBIDITY OF CHILDREN 6 TO 60 MONTHS IN NIGER: A CLUSTER RANDOMIZED TRIAL

Sheila Isanaka ${ }^{1}$, Nohelly Nombella², Ali Djibo³, Marie Poupard², Dominique Van Beckhoven², Valerie Gaboulaud², Philippe J. Guerin ${ }^{2}$, Rebecca F. Grais ${ }^{2}$
${ }^{1}$ Departments of Epidemiology and Nutrition, Harvard School of Public Health, Boston, MA, United States, ${ }^{2}$ Epicentre, Paris, France, ${ }^{3}$ Ministry of Health, Niamey, Niger

Ready-to-use-therapeutic foods (RUTF) are becoming an important component of the effective outpatient treatment of severe wasting. Their utility for prevention of wasting, however, has not been evaluated. Further, some findings of adverse health effects due to iron and folic acid supplementation suggest that iron supplementation in settings where the prevalence of malaria and other infectious diseases is high should be proceeded with cautiously. We evaluate the effect of a 3-month preventative supplementary feeding using RUTF on the nutritional status, mortality and morbidity of children 6 to 60 months. A cluster randomized trial of 12 villages in Maradi, Niger. Six villages were randomized to intervention and 6 to no intervention. Villages were visited monthly from August 2006 to March 2007. All children in the study villages between 6 and 60 mo of age were eligible for recruitment. The monthly distribution consisted of one packet per day of RUTF (PlumpyNut ${ }^{\oplus}, 500 \mathrm{kcal} /$ day) to each eligible child with weight-for-height $\geq 80 \%$ of the NCHS reference median from August to October 2006. Our main outcome was change in weight-for-height $\mathrm{Z}(\mathrm{WHZ})$ score according to the WHO Standards and incidence of wasting ($\mathrm{WHZ}<-2$) over 8 months of follow up. The adjusted overall effect of the intervention on WHZ change was 0.18 Z ($95 \% \mathrm{CI}$: $0.09,0.27$) over 8 mo . This effect was strongest in children 24 mo or younger at baseline. The intervention resulted in a $36 \% ~(95 \% \mathrm{Cl}: 20 \%$ -49%) reduction in the incidence of wasting and a 57% ($95 \% \mathrm{Cl}: 43 \%-$ $68 \%)$ reduction in the incidence of severe wasting. There was no evidence of increased risk of malaria associated with RUTF supplementation. There was a non-significant 49\% reduction in mortality associated with the intervention. In conclusion, in a setting of acute food insecurity, short-term preventative supplementation with RUTF reduced the decline in WHZ and incidence of wasting and severe wasting. This study suggests that this product fortified with 11.5 mg of iron $/ 100 \mathrm{~g}$ did not aggravate malaria but further research is needed.

1224

PATHOGENESIS OF HAEMORRHAGE ASSOCIATED WITH DENGUE INFECTION IN ADULTS IN VIETNAM

Dinh The Trung ${ }^{1}$, Tran Tinh Hien², Le Thi Thu Thao², Nguyen Minh Dung², Tran Van Ngoc², Robert Goldin³, Edward Tuddenham ${ }^{4}$, Cameron Simmons ${ }^{5}$, Jeremy Farrar ${ }^{5}$, Bridget Wills ${ }^{5}$ ${ }^{1}$ University of Medicine and Pharmacy of Ho Chi Minh City, Ho Chi Minh city, Vietnam, ${ }^{2}$ Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam, ${ }^{3}$ Department of Investigative Sciences, Imperial College, London, United Kingdom, ${ }^{4}$ Katherine Dormandy Haemophilia Centre and Thrombosis Unit University College, London, United Kingdom, ${ }^{5}$ Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam

The number of adults with severe dengue disease continues to increase in South-East Asia, as well as in South Asia and Latin American countries. Bleeding manifestations and severe liver involvement appear to be more common in adults than in children and may cause death. To date the pathogenesis of bleeding in dengue infections remains poorly understood, and there is little formal data comparing adult and paediatric patterns of disease. We present data from a prospective study of more than 600 adults representing the full spectrum of dengue disease admitted to a single hospital in Vietnam in 2006-7. Clinical and basic laboratory features will be described, with particular reference to bleeding manifestations and coagulation tests/platelet abnormalities, documented carefully throughout the evolution of the disease, and compared with similar observations from a group of children admitted to the hospital during the same dengue season. In addition to thrombocytopenia, an increase in activated partial thromboplastin time (APTT) and a reduction in fibrinogen levels were the two most consistent abnormalities detected, although typical DIC was unusual. Heparan sulfate (HS), a major constituent of the endothelial surface glycocalyx layer that is a known receptor for the dengue virus, is closely related to the therapeutic anticoagulant agent, heparin, and could function in a similar way to increase the APTT if released into the circulation. HS levels were measured in a subgroup of 200 of the adult dengue patients, and found to be markedly elevated; we will present data correlating HS levels with clinical severity and with the APTT derangement in support of this hypothesis. Secondly in vivo mammalian studies of intrinsic permeability indicate that despite its large size fibrinogen leaks from the microvasculature at a similar rate to the much smaller albumin molecule. Albumin leakage increases dramatically in patients with dengue shock syndrome. Using immuno-histochemistry we demonstrate interstitial leakage of fibrinogen in a series of 15 skin biopsies taken from among the adults with DSS, suggesting that leakage rather than consumption accounts for the low fibrinogen levels noted.

1225

IMPACT OF MASS AZITHROMYCIN TREATMENT ON THE PREVALENCE OF ACTIVE TRACHOMA AND OCULAR CHLAMYDIA TRACHOMATIS IN THE GAMBIA

Emma Harding-Esch ${ }^{1}$, Martin J. Holland ${ }^{1}$, Ansumana Sillah², Sandra Molina ${ }^{1}$, Aura Aguirre-Andreasen ${ }^{1}$, Paul Snell ${ }^{3}$, Tansy Edwards¹, Robin L. Bailey¹, David C. Mabey¹
'London School of Hygiene and Tropical Medicine, London, United Kingdom, ${ }^{2}$ National Eye Care Programme, Banjul, Gambia, ${ }^{3}$ Medical Research Council Laboratories, Fajara, Gambia
Trachoma, caused by ocular serovars of Chlamydia trachomatis (CT), is the leading infectious cause of blindness. Antibiotic treatment is part of the WHO control strategy and The Gambia has qualified for a donation of azithromycin by Pfizer. We report the prevalence of active trachoma and ocular CT before and one year after mass azithromycin treatment in The Gambia. At both baseline and follow-up, children aged 0-9 years in 6 villages were screened for trachoma clinical signs according to the WHO simplified grading system. Ocular specimens were taken from each child's right eye and processed by Amplicor PCR for the second-collected swab of baseline samples, and the first-collected swab of follow-up samples.

Mass treatment was conducted after baseline screening. At baseline 280/1171 children (23.9\%) had active trachoma and 35 (3.0\%) were PCR positive. At follow-up 207/1175 children (17.6\%) had active trachoma and $45(3.8 \%)$ were PCR positive. After treatment the prevalence of active trachoma decreased in all villages although in one village the difference was insignificant ($p=0.952$). There was no evidence of CT infection in 2 villages at follow-up, and only one PCR positive case in 2 other villages. However, 2 villages had higher CT prevalence at follow-up than at baseline. WHO policy is to mass treat annually for 3 years any community where the prevalence of active trachoma in children aged 1-9 years is $\geq 10 \%$. At baseline, all 6 villages qualified for mass treatment and at follow-up all but one village still had $\geq 10 \%$ prevalence. However, CT prevalence was low indicating that these villages may be unnecessarily receiving treatment, thus wasting scarce resources. The higher CT prevalence at follow-up than at baseline may be explained by low treatment coverage (51.0%) in one village, but not in the other (93.6\%). Another explanation is that of cross-border re-infection from Senegal, as has previously been reported. Antibiotic treatment should therefore be conducted over a wide geographical area to limit re-infection from occurring. Investment in the long-term "F" and "E" components of the SAFE strategy is also important if trachoma elimination is to be maintained in The Gambia.

1226

EXTRA-HEPATIC CYSTIC HYDATID DISEASE: A DIAGNOSTIC DILEMMA?

Parsotam R. Hira ${ }^{1}$, Faiza Al-Ali², Fathma A. Al-Shelahi², Nabila Khalid ${ }^{1}$, Nadia A. Al-Enezy ${ }^{3}$, Santosh Hebbar4, Deena Al-Rifaai ${ }^{5}$, Mehraj Sheikh ${ }^{6}$
${ }^{1}$ Department of Microbiology, Faculty of Medicine, Kuwait City, Kuwait, ${ }^{2}$ Department of Laboratories, Farwaniya Hospital, Kuwait City, Kuwait, ${ }^{3}$ Department of Laboratories, Mubarak Al-Kabeer Hospital, Kuwait City, Kuwait, ${ }^{4}$ Department of Radiology, Farwaniya. Hospital, Kuwait City, Kuwait, ${ }^{5}$ Department of Radiology, Farwaniya. Hospital, Farwaniya, Kuwait City, Kuwait, ${ }^{6}$ Department of Radiology, Faculty of Medicine, Kuwait City, Kuwait

Cystic hydatid disease (CHD), a zoonosis due to the metacestode of the canine tapeworm Echinococcus granulosus is endemic in parts of the sheep-rearing areas of the Middle East, including Kuwait. CHD of the liver, with the presenting triad of symptoms of abdominal pain, a palpable mass and jaundice is well documented. However, man being an aberrant host, a variable proportion of the cysts develop extra-hepatically giving rise to non-specific symptoms, resulting in delayed or misdiagnosis. The magnitude of the problem of extra-hepatic cysts, and the consequent difficulties in diagnosis has yet to be defined and may be an underestimate in endemic countries, including Kuwait. We first describe patients presenting with extra-hepatic CHD to show the variety of unusual presentations and the difficulties in laboratory diagnosis. We discuss such cyst/s in the lung in a Saudi female; in the posterior triangle of the neck in a female Kuwaiti and in the breast in another; in the brain and heart in a Syrian male and in the pelvis in a Bangladeshi male. The diagnosis in each was confirmed by serology, presence of scolicies and hooks after nuclepore filtration of aspirated fluid and/or histopathology of sectioned cysts. We then show that of a total of 1201 patients, CHD was diagnosed in 198 (16.5\%); 155 (78.3\%) had cysts in the liver but in 39(19.7\%) they were extra-hepatic. In four patients (2\%), cysts were both in the liver and extra-hepatic too. The number of patients with extra-hepatic cysts will vary in each endemic zone depending on the phenotypic and genotypic variability of the parasite. The G1 strain involving dogs/sheep rather than camels/sheep is predominant in this endemic area influencing the site of location of hydatid cysts in man. We elaborate on the mode of transmission which also influences the target organ in each geographic area. Indeed our data may not reflect the true magnitude of the problem as a whole body scan was not performed either on those with hepatic or extra-hepatic cyst. Even with the advent of imaging studies, the availability of serology and the increased use of fine-needle aspiration cytology, we
show that diagnosis of extra-hepatic CHD is fraught with difficulties. Such data are essential for the attending physician to make an informed judgment and to differentiate CHD from masses like tumours, congenital, simple and other cystic lesions which we encountered and enumerate in our extensive list from this geographic locale.

1227

SEROPREVALENCE OF STRONGYLOIDES IN NEWLY ARRIVED IMMIGRANTS AND REFUGEES

Christina A. Greenaway ${ }^{1}$, J. Dick MacLean², Brian J. Ward³, Momar Ndao³
${ }^{1}$ SMBD Jewish General Hospital, Montreal, QC, Canada, ${ }^{2}$ McGill University Centre for Tropical Diseases, Montreal, QC, Canada, ${ }^{3}$ National Reference Centre for Parasitiology, Montreal, QC, Canada

Strongyloides stercoralis is an intestinal parasite that is highly endemic in tropical countries with reported seroprevalence ranging in immigrants from $1-75 \%$ depending on their country of origin, immigration class, and the diagnostic method used. A large proportion of newly arrived immigrants and refugees may be asymptomatically infected with strongyloides for life. Such chronic infections put these individuals at risk for disseminated disease (associated with high mortality) and that could be prevented through targeted screening or empiric treatment programs. A total of 1294 foreign-born adults (≥ 18 years), having lived ≤ 5 years in Canada were recruited from 2 hospitals and 3 clinics in Montreal, between October 2002 and December 2004. Sociodemographic information was collected via a questionnaire. Antibodies to recombinant Strongyloides stercoralis NIE antigen [Optical density (OD) $<0.35=$ negative, $\geq 0.35-0.45=$ low positive, $>0.45-0.75=$ moderately positive, $>0.75=$ high positive] and antibodies to Brugia malayi antigen (OD $<0.3=$ negative, $\geq 0.3-0.4=$ low positive, $>0.4-0.7=$ moderately positive, $>0.7=$ high positive) were detected by ELISA. The mean age was 33 ± 8.8 years (range 18-76), 66% were female, 49% were refugee or refugee claimants and 47% had a university degree. A large portion of the patient population had antibodies to strongyloides 27% ($95 \% \mathrm{Cl}, 22-32 \%$)] and ranged in 6 different geographic regions from $17 \%-41 \%$. A total of $11 \%(146 / 1294)$ of the study population had positive filaria serology and $19 \%(67 / 350)$ of all patients with positive strongyloides serology also had positive filaria serology, suggesting some cross reactivity and/or dual infection. In preliminary multivariate analysis, positive strongyloides serology was more common in men than women [OR, $95 \% \mathrm{Cl} ; 1.8$, (1.22.1)], in refugees vs immigrants [1.4 (1.01-1.9)], in those with moderately positive filaria serology [3.3 (1.9-5.7)], or high positive filaria serology [2.4 (1.01-5.5)] vs those with negative serology, and within several world regions after adjusting for the variables noted above as well as age and several socioeconomic factors. In conclusion, a large proportion of adult immigrants and refugees in the Montreal area are infected with strongyloides and are at risk for disseminated disease. These individuals would likely benefit from targeted screening programs and or empiric treatment.

1228

PHENOTYPIC AND GENOTYPIC EVIDENCE OF EMERGING IVERMECTIN RESISTANCE IN ONCHOCERCIASIS

Mike Y. Osei-Atweneboana ${ }^{1}$, Simon K. Atta², Kwablah Awadzi${ }^{3}$, Daniel A. Boakye ${ }^{4}$, John O. Gyapong ${ }^{5}$, Roger K. Prichard ${ }^{1}$
${ }^{1}$ McGill University, Ste. Anne-De-Bellevue, QC, Canada, ${ }^{2}$ Onchocerciasis Chemotherapy Research Center, Hohoe, Ghana, ${ }^{3}$ Onchocerciasis Chemotherapy Research Center, Hohoe, Ghana, Noguchi Memorial Institute for Medical Research, Accra, Ghana, ${ }^{5}$ Health Research Center, Ghana Health Services, Accra, Ghana
Onchocerciasis, commonly known as "River blindness" is a disease affecting over 37 million people, primarily in Africa. Ivermectin, the only drug for mass treatment is showing reduce efficacy to adult Onchocerca volvulus, the causative agent of the disease. We have carried out a 21
month longitudinal study, on 301 subjects from 10 Ghanaian communities that have received between 7-20 rounds of IVM treatment, to assess the microfilaricidal effect of ivermectin and its impact on adult female worm reproductive status. Nodulectomies were carried out on 140 subjects three months after the last IVM treatment. Embryogrammes were constructed on all intact female worms. We observed significant differences in these communities in terms of worm burdens, female worm production of various embryonic stages and production of intra-uterine stretched mf. From this data, we have classified communities into three responses group. Three communities showed poor response, two were moderate responders and five communities, including a previously IVM naïve community, were good responders. B tubulin isotype 1 gene has been shown to be linked to IVM selection in O. volvulus and also associated with IVM resistance in veterinary nematodes. We have genotyped the full length genomic DNA for β-tubulin of 284 O. volvulus adult worms obtained from all response groups. We observed single nucleotide polymorphisms (SNPs) at 21 sites on the entire 3696 bp gene. Of these, seven occurred in exons, one translating into an amino acid change, while 14 occurred in introns; of particular interest were the changes in the first intron. We observed significance differences ($\mathrm{P}<0.03$) between the three response groups at five SNPs occurring in both exons and introns. The phenotypic and genotypic evidence indicates that IVM resistance is being selected and is manifested as a loss of effect of IVM on suppression of parasite reproduction. B-tubulin may be a useful genetic marker for the selection of IVM resistance.

1229

CO-CULTURE WITH PLASMODIUM FALCIPARUM-INFECTED RED BLOOD CELLS INDUCES DIFFERENTIATION OF FUNCTIONALLY COMPETENT REGULATORY T CELLS FROM LYMPHOCYTES OF MALARIA-NAÏVE DONORS

Olivia Finney ${ }^{1}$, Emma Lawrence ${ }^{2}$, Judith Satoguina³, David Conway ${ }^{3}$, Eleanor Riley ${ }^{1}$, Michael Walther ${ }^{3}$
${ }^{1}$ LSHTM, London, United Kingdom, ${ }^{2}$ Manchester University, Manchester, United Kingdom, ${ }^{3}$ MRC, Banjul, Gambia
An important aspect of clinical immunity to malaria is the ability to down-regulate inflammatory responses once parasitaemia is under control, in order to avoid host-mediated pathology. Previously, we found that regulatory T cells (Tregs) are upregulated in response to sporozoite challenge in malaria naïve volunteers, leading to reduced proinflammatory responses and enhanced parasite growth, More recently we found that natural exposure to malaria may induce a transient increase in the number of functional Tregs: increased percentages and absolute numbers of CD4+Foxp3+CD127-low T cells were found in individuals living in a rural village with stable malaria transmission than in individuals living in an urban area where malaria rarely occurs. Moreover, in the same rural population, levels of FOXP3 mRNA were higher at the end of the malaria transmission season than at the end of the dry season 6 months later. In the present study we demonstrate that functionally active Tregs can be induced in vitro, in a dose dependent manner, by co-culture with P. falciparum schizont extract or viable parasitized red blood cells. Depletion of CD25 ${ }^{+}$T cells prior to co-culture abrogates this effect suggesting either that natural Tregs are the precursors of the induced population or that their presence is required for induction to take place. Tregs express very high levels of Fas (CD95), and low levels of Bcl 2 both ex-vivo and after induction in vitro, suggesting they are prone to undergo apoptosis. This would explain the transient increase in this population observed in vivo after exposure to malaria. Ongoing studies addressing the role of apoptosis in the fate of malaria-induced Tregs in vitro will be presented.

1230

FUNCTIONAL RELATIONSHIP BETWEEN IL-1 β PROMOTER HAPLOTYPES (-31C/T AND -511A/G) AND PEDIATRIC SEVERE MALARIAL ANEMIA

Collins Ouma ${ }^{1}$, Tom Were ${ }^{1}$, Greg Davenport², Christopher Keller ${ }^{3}$, Samuel Anyona ${ }^{1}$, Henry Ndege ${ }^{1}$, Michael Otieno ${ }^{4}$, John Vulule ${ }^{5}$ Jeremy Martinson², Robert Ferrell², John Michael Ong'echa', Douglas Perkins ${ }^{6}$
${ }^{1}$ University of New Mexico/KEMRI, Kisian, Kenya, ${ }^{2}$ University of Pittsburgh, Pittsburgh, PA, United States, ${ }^{3}$ Lake Erie College of Osteopathic Medicine, Erie, PA, United States, ${ }^{4}$ Kenyatta University, Nairobi, Kenya, ${ }^{5}$ KEMRI, Kisian, Kenya, ${ }^{6}$ University of New Mexico, Albuquerque, NM, United States
Interleukin (IL)-1 is an important inflammatory mediator in Plasmodium falciparum infections. Although the inflammatory profile associated with protection against severe malarial anemia (SMA) is largely undefined, increased IL- 1β production appears to limit parasitemia. Previous studies showed associations between individual IL-1 β promoter variants (-31C/T and $-511 \mathrm{~A} / \mathrm{G}$) and malaria disease severity. To further examine the role of IL- 1β promoter variants in conditioning malaria disease outcomes, the relationship between $-31 \mathrm{C} / \mathrm{T}$ and $-511 \mathrm{~A} / \mathrm{G}$ haplotypes, SMA (Hb<6.0g/ dL), high-density parasitemia (HDP; $>10,000$ parasites $/ \mu \mathrm{L}$) and circulating IL-1 β was investigated in children with acute malaria ($n=566$) residing in a holoendemic P. falciparum transmission area. Hematological and parasitological profiles were determined in all study participants. IL-1 β $-31 C / T$ genotyping was carried out by PCR and Alul restriction enzyme digestion, while -511A/G genotypes were determined using a Taqman 5 -allelic discrimination assay. Circulating IL-1 β concentrations were determined using the Cytokine 25 -plex assay. Frequencies of $-31 \mathrm{C} /-$ 511A, -31C/-511G, -31T/-511A and -31T/-511G haplotypes were 87.2%, $29.1 \%, 2.1 \%$, and 30.9%, respectively. Multivariate logistic regression analyses controlling for age, gender, sickle-cell trait, HIV-1, and bacteremia revealed that $-31 \mathrm{C} /-511 \mathrm{~A}$ was associated with increased risk of SMA (OR; $1.98,95 \% \mathrm{CI}, 1.55-2.27 ; P<0.05$) while -31T/-511A was non-significantly associated with protection against SMA (OR; $0.52,95 \% \mathrm{CI}, 0.18-1.16$; $P=0.11$). Consistent with these observations carriage of CA and TA haplotypes was associated with reduced $(P<0.05)$ circulating and elevated ($P<0.05$) IL-1 β production, respectively. Additionally, IL-1 β levels were lower in SMA compared to non-SMA children. These results demonstrate that variation in the IL- 1β promoter conditions susceptibility to SMA and functional changes in circulating IL-1 β levels.

1231

INHIBITION OF ANCYLOSTOMA CEYLANICUM MACROPHAGE MIGRATION INHIBITORY FACTOR (ACEMIF): POTENTIAL FOR PREVENTING HOOKWORM-ASSOCIATED IMMUNOMODULATION AND DISEASE PATHOGENESIS

Jon J. Vermeire ${ }^{1}$, Yoonsang Cho², Lin Leng³, Elias Lolis², Richard Bucala³, Michael Cappello¹
${ }^{1}$ Program in International Child Health and Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States, ${ }^{2}$ Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States, ${ }^{3}$ Department of Medicine, Yale University School of Medicine, New Haven, CT, United States

Hookworms, parasitic nematodes that infect nearly one billion people worldwide, are a major cause of anemia and malnutrition. We hypothesize that hookworms actively manipulate the host immune response through the elaboration of specific molecules at the host-parasite interface designed to facilitate infection by larval stages and adult worm survival within the small intestine. Full-length cDNAs encoding two orthologs of the human cytokine, Macrophage Migration Inhibitory Factor (MIF) have been cloned from the hookworm Ancylostoma ceylanicum. Elucidation of the three dimensional crystal structure of recombinant AceMIF-2 (rAceMIF-2) revealed an overall structural homology with significant differences in the tautomerase sites of the human and hookworm
proteins. The relative bioactivities of human and hookworm MIF were compared using in vitro assays of tautomerase activity, monocyte migration, and binding to the MIF receptor, CD74. These data provide evidence that the hookworm-derived AceMIF molecules are bioactive and functional orthologs of human MIF. Vaccination of laboratory animals using purified rAceMIF-2 was associated with partial protection against anemia and growth delay following challenge infection, compared to adjuvant immunized controls. Selective in vitro inhibitors of rAceMIF activities were identified using high-throughput screening (HTS) of a small molecule library representing previously defined biologically active compounds. In summary, based on its unique immunological, structural, and functional characteristics, AceMIF is a viable target for novel drug and/or vaccine based strategies for selectively inhibiting these hookworm cytokine orthologs as a means of reducing parasite survival and disease pathogenesis in vivo.

1232

PATENT FILARIAL INFECTION MODULATES MALARIASPECIFIC TYPE 1 CYTOKINE RESPONSES IN AN IL-10 DEPENDENT MANNER IN A FILARIA/MALARIA CO-INFECTED POPULATION

Simon Metenou ${ }^{1}$, Benoit Dembele², Siaka Konate², Housseini Dolo², Lamine Soumaoro², Abdallah A. Diallo², Michel E. Coulibaly², Siaka Y. Coulibaly², Dramane Sanogo², Yaya I. Coulibaly², Sekou F. Traore², Amy Klion¹, Thomas B. Nutman¹, Siddhartha Mahanty ${ }^{1}$
${ }^{1}$ National Institutes of Health, Bethesda, MD, United States, ${ }^{2}$ Filaria Unit, FMPOS, University of Bamako, Bamako, Mali

Human co-infection with malaria and filarial parasites is common in regions of Africa and particularly in Mali where both Plasmodium falciparum (Pf) and Wuchereria bancrofti (Wb) are transmitted by the same mosquito vector. As filarial infections can modulate responses to bystander antigens, we investigated the effect of filarial infections on malariaspecific immune responses. Blood samples were collected from individuals with Wb and/or Mansonella perstans (Mp) infections (Fil+; n=19), as determined by a Wb Ag capture ELISA and/or circulating microfilariae (Mf), and those with no evidence of active filarial infections (Fil-; $n=20$) from the same village. Whole blood samples were cultured in vitro with Pf-infected red blood cell lysate [MalAg] or Brugia malayi adult antigen (BmA) or medium alone for 24 hrs. The supernatants were assayed for IL2, IL-4, IL-6, IL-10, IL-12p70, IL-17A, IP-10, TNF- α and IFN- γ by LuminexTM Compared to the Fil- group, Fil+ individuals had significantly higher levels of IL-10 $(p=0.027)$ and $\mathrm{IL}-17 \mathrm{~A}(\mathrm{p}=0.037)$ produced spontaneously. The Fil+ group also mounted a significantly lower IL-12p70 (GM 1.11 vs. 3.20 $\mathrm{pg} / \mathrm{ml}, \mathrm{p}=0.022$), IFN- $\gamma(4.77$ vs. $17.32 \mathrm{pg} / \mathrm{ml} \mathrm{p}=0.06$) and IP10 (34.46 vs. $261.1 \mathrm{pg} / \mathrm{ml} p=0.0023$) responses following MalAg stimulation but a significantly higher IL-10 response ($7541 \mathrm{pg} / \mathrm{ml}$ vs. $3198 \mathrm{pg} / \mathrm{ml}, \mathrm{p}=0.022$) compared to the Fil- group. In contrast, BmA induced significantly higher levels of IL-2 and IL-4 in Fil- than in Fil+ individuals. To understand the role played by either IL-10 or TGF- β in the regulation of Type 1 responses to MalAg in filarial infections, neutralizing antibodies to IL-10 and/or TGF- β were utilized in vitro. Whereas, anti-TGF- β had little effect on preventing the MalAg specific downregulation, anti-IL10 antibodies induced a significant reversal of IL-12p70, IFN- γ, and IP10 (p<0.001). Blocking both IL-10 and TGF- β together did not augment the responses seen with IL10 blockade alone. Taken together these data demonstrate that filarial infections clearly modulate the Pf-specific IL-12p70-IFN- γ pathway known to play a key role in resistance to malarial parasites and do so in an IL10dependent manner. Flow cytometric analysis is currently underway to determine if Pf-specific Type 1 response modulation extends to the level of CD4+ T cell frequencies of effector or regulatory cells.

1233

CO-INFECTION WITH HELMINTHS AND MALARIA DURING PREGNANCY EFFECT SUSCEPTIBILITY TO FALCIPARUM MALARIA DURING CHILDHOOD

Indu Malhotra ${ }^{1}$, Peter Mungai ${ }^{1}$, Alex Wamachi², John Ouma ${ }^{3}$, Davy Koech ${ }^{2}$, Eric Muchiri ${ }^{4}$, Christopher L. King ${ }^{1}$
${ }^{1}$ Case Western Reserve University, Cleveland, OH, United States, ${ }^{2}$ Kenya Medical Research Institute, Nairobi, Kenya, ${ }^{3}$ Kenyatta University, Nairobi, Kenya, ${ }^{4}$ Division Of Vector Born Diseases, Nairobi, Kenya
We have previously observed that a subset of offspring of malaria infected pregnant women fail to acquire fetal priming to malaria blood stage antigens in utero. These putatively tolerant children were more susceptible to malaria during childhood. Since co-infections with helminths and malaria are common in developing countries we hypothesize that helminth co-infection during pregnancy may down modulate fetal immune responses to blood-stage malaria antigens. To examine the impact of helminths (schistosomiasis, lymphatic filariasis and/or hookworm) on malaria susceptibility we undertook a prospective cohort study of 705 newborns in a malaria endemic region of Kenya in which children were examined every 6 months from birth to 4 years of age for Plasmodium falciparum infection and the presence of malaria antigen-specific T cell responses. Overall 26% of the pregnant women were co-infected with helminths and malaria, 16% with malaria and 34% with helminths alone. There was a 2-3 fold increase in risk of malaria infection in offspring of women with mixed helminth and malaria infection compared to offspring of women without either infection ($\mathrm{p}<0.01$) as measured by frequency of blood smear and PCR positivity at 12, 18 and 30 months of age. Similarly, offspring of women with mixed infection had significantly reduced hemoglobin levels at 12 months of age (geomean $=7.7 \mathrm{~g} /$ $\mathrm{dL}, \mathrm{p}=0.02$) compared to offspring of women with single infection. The increased susceptibility to malaria infection in offspring of women with mixed infection was associated with >2-fold reduced malaria-antigen-driven IFN- γ production by peripheral blood mononuclear cells compared to offspring of women infected with malaria or helminths alone ($p=0.01$). Thus, helminth co-infections during pregnancy may induce an immunomodulatory fetal response resulting in impaired fetal priming to malaria in utero that could enhance the risk for malaria infection during infancy. Treatment of women for helminth infections during pregnancy may have a beneficial effect on malaria susceptibility in childhood.

1234

IDENTIFICATION AND CLONING OF BABOON TLF WHICH KILLS HUMAN INFECTIVE AFRICAN TRYPANOSOMES IN VIVO

Russell Thomson

New York School of Medicine, New York, NY, United States
African trypanosomiasis remains a scourge of public health and an obstacle to agricultural and economic development in sub-Saharan Africa. In humans the disease is caused by infection with T . brucei rhodesiense in east Africa and T . brucei gambiense, in west Africa. Cattle and other domestic animals are a major reservoir of T. b. rhodesiense. T. brucei brucei causes disease in cattle and other animals but cannot infect a subset of primates due to trypanosome lytic factors (TLFs) present in their serum. Human TLFs are high density lipoprotein complexes that contain Haptoglobin related protein (Hpr) and apolipoprotein L-I (apoL-I). Haptoglobin related protein forms part of a ligand (Hpr-Hb) that enhances the uptake of TLF. Apolipoprotein L-I is a pore forming protein that becomes active in acidic conditions and forms pores in the lysosome membrane. Human TLFs cannot kill T. b. rhodesiense due to the acquisition of SRA. Baboon sera and purified HDL can kill human infective T . brucei, confirming that baboon and human TLFs are different. To identify the trypanolytic component of baboon serum we purified TLF and analysed the protein components using Tandem mass-spectrometry. The peptide sequences obtained were used to clone two cDNAs encoding proteins with homology to human TLF components. Using a
hydrodynamic-based transgenic mouse model we show that expression of the cDNA clones confers TLF activity on mouse HDLs and protects mice from infection with both animal and human infective T. brucei. We propose that the production of baboon TLF transgenic cattle could be used to generate healthier livestock and reduce the transmission of human sleeping sickness in east Africa.

1235

UNEXPECTED TRNA ENCODED WITHIN THE MITOCHONDRIAL 12S RRNA OF TRYPANOSOMA BRUCEI

Melissa Lerch, Matt Beverly, Ken Stuart, Steve Hajduk
Seattle Biomedical Research Institute, Seattle, WA, United States, University of Georgia, Biochemistry and Molecular Biology Department, Athens, GA, United States
Typically mitochondria encode all of the transfer RNAs (tRNA) necessary for autonomous protein synthesis. However kinetoplastids, a protozoan parasite, have one of the smallest mitochondrial genomes and require unique modifications such as RNA editing to produce translatable mRNA. The kinetoplast maxicircle DNA (kDNA), which encodes the mitochondrial genome, is compact and contains little to no intergenic regions where most mitochondrial tRNAs are encoded. To date, there has been no evidence for tRNAs encoded within the mitochondrial kDNA, rather a full set of tRNAs are imported from the cytosolic pool of tRNAs. Analysis of the T. brucei nuclear genome with tRNAscan-SE verified this expectation and we identified genes for most of the tRNAs. However the tRNAPhe(AAA) was not detected. This was surprising since the UUU codon is the most abundant in mitochondrial mRNA due in part to uridine insertion during RNA editing. While third position wobble base pairing with the UUU codon would allow other phenalanine tRNAs to substitute for the tRNAPhe(AAA), there is one duplicated tRNAPhe(GAA) identified in the nuclear genome. We repeated the tRNAscan-SE analysis on maxicircle kDNA allowing for low covariance model values that are common for mitochondrial tRNAs. The most promising candidate for tRNA ${ }^{\text {Phe(AAA) }}$ contained an unusually large intron and is encoded within the 125 rRNA. We have demonstrated the existence of this processed tRNA using 1Dand 2D- denaturing urea-polyacrylamide gels and northern blotting with probes specific for the tRNA. We can also demonstrate that these tRNAs retain their aminoacylation when isolated under acidic conditions and upon basic treatment aminoacylation is lost. Studies are underway to sequence and further characterize this unusual mitochondrial tRNA.

1236

VALIDATION OF PLASMODIUM FALCIPARUM ISOLEUCYL TRNA SYNTHETASE AS A DRUG TARGET

Eva S. Istvan, Daniel E. Goldberg

Washington University School of Medicine, St. Louis, MO, United States Intraerythrocytic Plasmodium falciparum has minimal capability for amino acid synthesis. Amino acids are obtained via hemoglobin degradation and via uptake from the extracellular environment. Parasites are able to grow with isoleucine as the sole exogenous amino acid, relying on hemoglobin degradation for most of their needs (isoleucine is the only amino acid absent in human hemoglobin). Malaria parasites may be especially sensitive to perturbation of isoleucine uptake and/or utilization.
tRNA synthetases couple amino acids to their cognate tRNAs. Two isoleucyl tRNA synthetases (IRSs) are predicted in the Plasmodium genome, one cytoplasmic and one containing a putative apicoplast targeting signal. Mupirocin is a compound produced by Pseudomonas fluorescens and is used clinically for methicillin-resistant Staph. aureus. Mupirocin resembles the Ile-AMP transition state complex and has been shown to act as a competitive inhibitor of bacterial and archeal IRSs. We determined that mupirocin is a potent anti-malarial compound and kills parasites at nanomolar concentrations. Parasites are killed with "delayed-death" kinetics. Inhibition by mupirocin is attenuated by high isoleucine medium.

To show that mupirocin acts on the apicoplast-located IRS, we selected parasites resistant to mupirocin. Sequencing of cloned mupirocin-resistant parasites revealed a C to T change at nt 4034 of the predicted apicoplast IRS. This mutation results in an amino acid change of Pro 1233 to Ser. Pro1233 is completely conserved in IRSS and is proximal to the active site.

1237

PROBING CENTRAL CARBON METABOLISM IN PLASMODIUM FALCIPARUM

Kellen Olszewski¹, Joshua D. Rabinowitz², Manuel Llinás ${ }^{1}$ ${ }^{1}$ Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, Unites States, ${ }^{2}$ Chemistry and LewisSigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
Despite decades of study, central carbon metabolism in the Plasmodia remains poorly understood. Early microscopic and biochemical observations suggested that blood-stage Plasmodia possess a minimal mitochondrion with limited respiratory capacity that does not contribute to energy generation. However, recent whole-genome sequences and transcriptional profiling experiments have revealed that potential homologs to all the necessary tricarboxylic acid (TCA) cycle enzymes are both encoded by the plasmodial genome and coordinately expressed during the trophozoite stage, strongly implying that some variant of the TCA cycle is active during asexual development. Several of these predicted enzymes have been confirmed biochemically or localized to the mitochondrion; however, the principal carbon source(s), directionality and ultimate role of the TCA cycle have not been established. We have used HPLC-MS/MS-based metabolomics and stable isotope-labeled nutrients to trace carbon flux through TCA cycle intermediates in in vitro cultures of Plasmodium falciparum (3D7 strain). Our data confirm the previously suggested disconnect between glycolysis and TCA metabolism and suggest an acyclic model in which glutamine and glutamate are the principal carbon sources and two discrete pathways act to generate energy, redox balance and biosynthetic intermediates. These results shed light on one of the most divergent examples of eukaryotic carbon metabolism and have implications for the effective design of therapeutic interventions.

1238

RAPID MEMBRANE DISRUPTION BY A PERFORIN-LIKE PROTEIN FACILITATES PARASITE EXIT FROM THE HOST CELL

Björn F.C. Kafsack1, Janethe D. O. Pena3, Isabelle Coppens2, Sandeep Ravindran4, John C. Boothroyd4, Vern B. Carruthers1 ${ }^{1}$ Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States, ${ }^{2}$ Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, United States, ${ }^{3}$ Department of Immunology, Universidade Federal de Uberlandia, Uberlandia, Brazil, ${ }^{4}$ Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
The MACPF domain owes its name to the pore-forming proteins of the mammalian immune system where it is found in the final components of the complement cascade that form the membrane attack complex and in perforin released by cytolytic effector cells. Widespread genome sequencing in combination with recent crystolographic studies has revealed that the MACPF-fold is of ancient origin and expressed by many bacterial and protozoan pathogens. Within the Apicomplexa we found two or more MACPF family member proteins in most members of the phylum for which genome sequencing is available with a notable exception being Cryptosporidium. Our work on the Toxoplasma PerforinLike Protein 1 (TgPLP1) revealed a 1151aa secretory protein containing an N -terminal propeptide, a well-conserved MACPF domain, and a predicted C-terminal beta sheet-rich domain. Antibodies raised against TgPLP1 allowed its localization to the micronemes of tachyzoites and confirmed its
secretion in response to calcium agonists. A TgPLP1-null strain displayed no noticeable in vitro growth defect but was severely attenuated in vivo. Closer examination revealed a defect in ionophore-induced egress from host cells despite an activation of gliding motility similar to wild-type levels. Additionally, the TgPLP1-null strain is severely impaired in its ability to permeabilize either the parasitophorous vacuolar membrane or the host plasma membrane following ionophore treatment of cytochalasin D-paralyzed vacuoles. Co-infection of host cells with wild-type and TgPLP1-null strains showed that egress of a WT vacuole was able to complement both the egress and permeabilization defects of the mutant vacuole. This marks the first time a secreted Toxoplasma protein has been shown to play a central role in egress.

1239

A CALCIUM DEPENDENT PROTEIN KINASE MODULATES MICRONEME SECRETION IN TOXOPLASMA GONDII

Sebastian Lourido

Washington University School of Medicine, St. Louis, MO, United States Apicomplexans rely on calcium as a second messenger to regulate motility, secretion, invasion and differentiation. Understanding calcium signal transduction is essential to elucidating the molecular mechanisms controlling these functions. Calcium dependant protein kinases (CDPKs) have been shown to respond to calcium, and genetic evidence in Plasmodium confirms their role in gametocyte exflagelation and ookinete motility. However, the basic pathways controlled by these kinases remain poorly understood, as does their role in other apicomplexans. Four canonical CDPKs conserved among apicomplexans are expressed in Toxoplasma gondii tachyzoites. Of these, TgCDPK1 and TgCDPK3 form a distinct phylogenetic lineage, sharing multiple characteristics. Both proteins are predicted to be N -terminal acylated and we show that these motifs are crucial for membrane localization of TgCDPK3. Additionally, both proteins are deposited in trails of gliding parasites, similarly to various components of the gliding machinery. To further examine the function of these CDPKs, we generated conditional inducible mutants employing the published tetracycline transactivator system. We successfully created a conditional TgCDPK1 mutant and have characterized its phenotype. When grown in the presence of anhydrotetracycline, mutant parasites grew normally and formed large stable vacuoles, suggesting an egress defect. When mechanically dissociated, the mutant parasites showed decreased adhesion and invasion into host cells, and reduced lytic ability in a monolayer growth assay. Reminiscent of mutations in certain microneme proteins, these phenotypes suggested a potential defect in secretion. Consistent with this hypothesis, we observed that TgCDPK1 mutants failed to secrete MIC2 in response to induction by ethanol, a potent agonist. These results suggest that TgCDPK1 may be activating microneme secretion, thus forming a critical signaling link downstream of calcium in this essential pathway.

1240

THE ROLE OF TNF AND MYD88 IN THE INDUCTION OF B CEL PATHOLOGY FOLLOWING TRYPANOSOMA BRUCEI INFECTION

Viki Bockstal ${ }^{1}$, Patrick Guirnalda ${ }^{1}$, Deborah Frenkel ${ }^{1}$, Stefan Magez², Samuel Black ${ }^{1}$
${ }^{1}$ Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States, ${ }^{2}$ Laboratory of Cellular and Molecular Immunology, Department of Molecular and Cellular Recognition, Flanders Interuniversity, Institute for Biotechnology (VIB), Vrije Universiteit Brussel, Brussel, Belgium Experimental T. brucei infections in C57BI/6 mice cause a severe defect in B lymphopoiesis in the bone marrow and show a depletion of splenic transitional T1 (AA4.1+, B220+, IgMhi, CD23-), T2 (AA4.1+, B220+, lgMhi, CD23+) and T3 (AA4.1+, B220+, IgMlo, CD23-) B lymphocytes in addition to the depletion of mature marginal zone (MZ) and follicular
(Fo) B cells. The decline in bone marrow B lymphopoiesis in infected mice appears to result from expulsion of B cell progenitor populations out of the bone marrow into the spleen as it was mirrored by an increase in common lymphoid progenitors (CLP; Lin-, AA4.1+, IL-7+), pre-pro-B (Lin-, IgM-, CD19-, AA4.1+, B220+), pro-B (Lin-, IgM-, CD19+, AA4.1+, B220+, CD43hi) and pre-B (Lin-, IgM-, CD19+, AA4.1+, B220+, CD431o/-) in the spleen. In contrast, the loss of bone marrow immature B cells (Lin-, CD43Io/-, AA4.1+, CD19+, B220+, IgM+) and splenic transitional B cells appears to result from apoptosis. To define the mechanisms underlying T. brucei AnTat 1.1E induced B cell pathology, infections were established in TNF and MyD88 gene-deficient mice. Both the loss of developing B cell populations pre-pro-B, pro-B, pre-B and immature B from the bone marrow and the infiltration of these precursor populations in the spleen was significantly less pronounced in infected TNF-/- mice as compared to in the wild type mice and MyD88-/- mice. Interestingly, during infection the depletion of transitional B cells was not only rescued in TNF-/- mice but also appeared to a much lesser extent in MyD88-/- mice as compared to infected wilt type mice. Finally, only in MyD88-/- mice reduced B cell pathology was observed with respect to the loss of FoB cells. In conclusion we show here that two important components of the innate immune system, TNF and MYD88, are involved in the induction B cell pathology during T. brucei infection and that at least 3 different processes, one TNFdependent, one TNF-and MYD88-dependent and one MYD88-dependent, are responsible for respectively the loss of B lymphopoiesis from the bone marrow and the depletion of transitional B cells and FoB cells.

1241

NEUTROPHILS ARE THE PREDOMINANT INITIAL HOST CELL FOR LEISHMANIA MAJOR AND ARE ESSENTIAL FOR THE ESTABLISHMENT OF SAND FLY TRANSMITTED INFECTION

Nathan C. Peters¹, Jackson G. Egen², Naglia Secundino¹, Alain Debrabant ${ }^{3}$, Nicola Kimblin ${ }^{1}$, Shaden Kamhawi ${ }^{1}$, Phillip Lawyer ${ }^{1}$, Ronald N. Germain², David Sacks¹
${ }^{1}$ Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States, ${ }^{2}$ Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States, ${ }^{3}$ Division of Emerging and Transfusion Transmitted Diseases, OBRR, CBER, Food and Drug Administration, Bethesda, MD, United States
Infection with the obligate intracellular protozoan Leishmania is thought to be initiated by direct parasitization of macrophages, but the early events following transmission to the skin by vector sand flies have been difficult to examine directly. Employing 2-photon intra-vital microscopy and flow cytometry, we observed a rapid and sustained neutrophilic infiltrate directed towards localized bite sites and subsequent phagocytosis of L. major. Neutrophils ultimately defined the sand fly bite site by creating a neutrophil "plug" at the location of proboscis penetration in the skin. The formation of the neutrophil plug occurs with both infected and uninfected sand flies, suggesting that the wound response to sand fly bite is the primary driving factor in acute neutrophil recruitment. Recruited neutrophils, not macrophages, were the predominant host cell during the first 24 hours of infection following needle inoculation, and neutrophils contained viable parasites that could be propagated in culture. Following adoptive transfer of infected neutrophils into the ear dermis of naïve mice, neutrophil derived parasites established disease as efficiently as infectious parasites obtained from culture. Between 24-72 hours of infection, L. major parasites transitioned from neutrophils to their definitive host cell, the macrophage, a process that involved parasite release from infected neutrophils. Lastly, depletion of neutrophils prior to infected sand fly bite abrogated the ability of L. major to initiate productive infections and was associated with an increase in the production of the proinflammatory molecules, IL-1 alpha and IL-1 beta. These findings reveal the directed migration of large numbers of neutrophils to sites of L. major deposition by sand fly bite, identify neutrophils as critical to the infectious process and an essential cell in the parasite life cycle, and suggest L. major exploits
the early host response to sand fly bite in order to establish and promote disease.

1242

DENDRITIC CELL IL-23 PRODUCTION IN RESPONSE TO SCHISTOSOME EGGS INDUCES TH17 CELLS IN A MOUSE STRAIN PRONE TO SEVERE IMMUNOPATHOLOGY

Mara G. Shainheit, Patrick M. Smith, Lindsey E. Bazzone, Laura I. Rutitzky and Miguel J. Stadecker

Department of Pathology, Tufts University School of Medicine, Boston, MA, United States
Infection with schistosomes results in a CD4 T cell-mediated inflammatory reaction against parasite eggs that varies greatly in magnitude both in humans as well as in mice. In the murine disease, the severe form of immunopathology correlates with high levels of interleukin 17 (IL-17). We now report that live schistosome eggs stimulate dendritic cells from (high pathology) CBA mice to produce IL-6, TGF-\&\#946; and IL-23, whereas those from (low pathology) BL/6 mice only make TGF-\&\#946;. Moreover, egg stimulation of dendritic cells plus naïve CD4 T cells from CBA mice resulted in increased levels of IL-17 and the chemokines CXCL1, CXCL2 and CCL2, whereas similarly treated BL/6 cell co-cultures instead expressed higher IL-4, IL-10 and Foxp3. Neutralization of IL-23, but not of IL-6 or IL-21, profoundly inhibited egg-induced IL-17 production in the CBA co-cultures, and only the addition of exogenous IL-23 stimulated BL/6 cells to make IL-17. These findings identify IL-23 as a critical host factor that drives IL-17-production and suggest that a genetically programmed innate pro-inflammatory response against the parasite determines the development of Th17 cells and the outcome of immunopathology in schistosomiasis.

1243

PERIPHERAL TREG INDUCTION CAN BE DIRECTLY MEDIATED BY HELMINTH-DERIVED PRODUCTS

John R. Grainger, Henry J. McSorley, Yvonne M. Harcus, Edward J. Greenwood, Rick M. Maizels

Institute of Immunology and Infection Research, University of Edinburgh, United Kingdom
Epidemiological studies of human allergic disease have highlighted the discordance between their increasing prevalence in the western world, compared to lower incidence in the developing world, where endemicity of helminth parasites is high. In animal models, a direct link has been suggested between helminth infection and reduced allergic responses. For example, mice harbouring the chronic rodent gut nematode H . polygyrus show suppressed allergic airway inflammation, even if infection follows normal sensitization of the immune system. Moreover, transfer of CD4+CD25+ Tregs, which expand in the mesenteric lymph nodes following infection, to uninfected sensitized animals results in reduced bronchial inflammation upon allergen challenge. These results suggest that parasites have evolved mechanisms to exploit host regulatory networks thus gaining a long-term survival advantage. An intriguing question is whether H. polygyrus activates pre-existing "natural" Tregs, or induces regulatory activity in peripheral naïve T cells. We have addressed this by functionally analysing a set of proteins released by live parasites, termed excretory/ secretory products (ES). We found that H. polygyrus ES (HES) is able to mediate Treg induction, in vitro, as anti-CD3 stimulation of Foxp3 negative splenocyte cultures in the presence of HES leads to de novo Foxp3 expression. Foxp3 induction is not observed with anti-CD3 stimulation alone or with a range of other pathogen-derived products tested under the same conditions. Furthermore, Foxp3 induction is dependent upon signalling through the TGF-beta receptor as inhibition of this pathway with a specific inhibitor (SB431542) abrogates Foxp3 induction by HES. The Tregs induced by HES are able to suppress proliferation of effector T cells to a similar extent as TGF-beta generated Tregs. These data confirm that helminth derived products are able to
directly drive Treg expansion in the periphery, raising the possibility that they can mediate the airway allergy suppression observed in whole worm infection.

Author Index

A

A, Sijuade O. 949
A, Sowunmi 949
Ab Barnabas, Gebre 173
Abad-Franch, Fernando 51
Abaga, Simon 738
Abastorflor, Maria del Carmen 1201
Abate, Luc 1079
Abban, Ekua 691, 1170
Abboud, Philippe 402
Abd-dalla, Mohamed 280
Abdoulaye, Traoré 856
Abdulla, Maha 1205
Abdulla, Salim 27, 172, 175, 568,
569, 614, 956, 982
Abdullah, Ariffin 1179
Abdulrahaman, Abdi 991
Abenyega, Tsiri 584
Abeyewickreme, Wimaladharma 842
Abila, Patrick 53
Abiodun, Oyindamola O. 974
Abokyi, Livesy 473
Abot, Esteban 1037
Abot, Stephen 1034
Abraham, David 1152, 1153
Abruquah, Harry H. 638
Abu Ayyash, Luma 1097
Abudho, Bernard 333
Acero, Víctor M. 546
Achan, Jane 177,824
Achee, Nicole L. 242, 260
Achidi, Eric A. 204
Achilla, Rachel 799
Acholonu, Alex D. W. 283
Acosta, Luz 331, 389
Adam, Ishag 346
Adama, Gansané 856
Adams, John H. 411, 628, 639, 776, 931
Adams, Rick 1105
Adazu, Kubaje 369, 372, 615
Adegbola, Richard 264
Adelman, Zach N. 321, 1162, 1163
Adeloye, Olufunke C. 453
Ademowo, George O. 398, 929, 948
Adeneye, Adeniyi K. 455
Adeothy, Adicat 1191
Adeyemo, Adebolajo 153, 154
Adhanom Ghebreyesus, Tedros 216
Adhikari, Prabha 280
Adiguma, Thomas 1158
Adigun, Lola E. 524
Adjei, George 28, 473
Adjei, Ohene 383
Adjemian, Jennifer 268

Adjuik, Martin 462, 876
Adler, A. J. 258
Adoke, Yeka 177, 1125
Adrian, Luty 856
Aebi, T. 27
Aebig, Joan 4, 22
Afonso, Sonia 438
Afrane, Yaw 603, 1002
Afroze, Sayma 319
Agbenyega, T. 28
Agbenyega, Tsiri 881, 1190
Agboatwalla, Mubina 20
Agbor, Jean-Pierre 1169
Agdebola, Richard 883
Ager, Arba L. 973
Agnamey, Patrice 470, 471
Agomo, Chimere C. O. 455
Agtini, Magdrina 105
Aguayo, Nicolas 1099
Agudo, Roberto 1099, 1101
Aguiar, Joao 1034
Aguilar, H. Marcelo 51
Aguilar, Patricia 1100, 1128
Aguirre-Andreasen, Aura 1225
Agwanda, Bernard 265
Agyemang, Alex 568
Ahmad, Fasihuddin B. 946
Ahmadi, Abdul Ali 54
Ahmed, Be-Nazir 1222
Ahmed, Rukshana 1013
Ahmed, Shadab 108, 503
Ahn, Heui-June 968
Ahoranayezu, Jean B. 791
Ahouidi, Ambroise D. 1212
Ahounou, Daniel 567
Ahrer, Margareta 966
Ahumada, Adriana 1, 176
Ainslie, Robert 99
Ajaiyeoba, Edith O. 239, 974
Ajayi, Ikeoluwapo O. 174
Akala, Hoseah 983
Akashi, Hiroomi 412
Akhwale, Willis 212
Akida, Juma A. 195, 1012
Akingbola, Titi S. 398
Akinsola, Adebayo 883
Akogbéto, Martin 567, 765
Akogun, Oladele 524
Akor, Francis 726
Aksoy, Serap 53
Al-Ali, Faiza 1226
Al-Enezy, Nadia A. 1226
Al-Kubati, Abdul Samid 131
Al-Mekhlafi, Hesham M. 276, 1179
Al-Rifaai, Deena 1226
Al-Shazly, Atef M. 361
Al-Shelahi, Fathma A. 1226
Alaba, Olufunke A. 853
Alabaster, Amy 658
Alaeddine, Ferial 1144
Alaganan, Aditi 30

Alameda, Laura 590
Alarcon, Maritza 533
Alarcón, Maritza E. 165, 166
Alarcon-Chaidez, Francisco 258, 1172
Alaro, James R. 1042
Alava, Aracely 127
Alba, Sandra 396, 573
Albújar, Christian 312
Alcena, Danielle C. 490
Alder, Stephen 881
Aldstadt, Jared 49
Aldunate, R. 1103
Alefantis, Timothy 2
Alegre Palomino, Yuri 766
Alexander, Jamela S. 283
Alexander, Mathew 396
Alexander, Neal 687, 1220
Alfred, Tiono B. 856, 877, 1035
Algarin, Elias 555
Ali, Mohamed A. R. 361
Alifrangis, Michael 226, 328, 345
Aliota, Matthew T. 428, 663
Alisjahbana, Bachti 13, 896, 897, 1109
Alker, Alisa P. 1119
Allan, Sandra A. 1087
Allen, Denise R. 175
Almeida, Fernanda B. 436
Almeida, Paulo 227, 229
Almeida, Roque P. 1203
Almeida, Walquiria 951
Almela, María 971
Almeras, Lionel 972
Alonso, Carlos 777
Aloy, Valeriano 738
Alphey, Luke 1068
Alphonse, Ouédraogo 856, 877, 1035
Alrefaei, Yousef N. 301
Alreja, Gaurav 80
Alum, Absar 284
Alva, Issac 1129
Alvarez, Angela 586, 587
Alvarez, Danilo 808
Alvarez, Kanwal 1199
Aly, Ahmed S. I. 410
Amador, Manuel 57, 123, 502
Amadou, Konaté T. 856, 877, 1035
Amadou Alpha, Sall 832, 912
Amalvict, Rémy 972
Amaral, Veronica 561, 920
Amathe, Ouédraogo 877, 1035
Ambrose, Pauline A. 430, 431
Amedome, Hyacinthe 1191
Ameh, David 793
Amemiya, Isabel 367
Amenga-Etego, Lucas 876
Amenga-Etego, Stephen 462
Amenya, Dolphin 1002
Amerasinghe, Priyanie H. 226

Amidou, Diarra 856, 877, 1017, 1035
Amoah, Linda 230
Amos, Emily 743
Ampofo, William 1166
Ampuero, Julia 1203
An, Xiuli 812
Anantapreecha, Surapee 110
Ananth, Cande 1000
Anchante-Herrera, Henry 879
Andersen, John 811
Anderson, Joel D. 1147
Anderson, Jeniffer M. 866
Anderson, Kathryn B. 891
Anderson, Roy M. 1148, 1149
Anderson, Sheri L. 692
Anderson, Tim 200, 1123
Anderson, Troy D. 1216
Anderson, Timothy J. C. 1147
Andersson, Neil 733
André Lin, Ouedraogo 856
Andreadis, Theodore 697
Andrews, Katherine T. 970
Andrianarivo, Aurélie G. 50
Andriano, Kim 569, 570
Ang, Agnes 439
Angel, Ross 811
Angov, Evelina 2, 5, 326, 643, 647
Angulo-Barturen, Iñigo 586, 587, 706
Angutoko, Patrick 395
Ankrah, Cecilia A. K. 172
Ann, Moormann M. 215
Anne, Dupressoir 832, 912
Anné, Jozef 409, 994
Anova, Lalaine 978, 979
Ansah, Evelyn K. 91
Ansah, Patrick 876
Ansari, Aftab A. 46
Ansong, D. 28
Ansong, Daniel 881
Anstey, Nicholas 796, 935, 1183, 1194
Anthony, Holder A. 624
Anto, Francis 876
Antonio-Nkondjio, Christophe 683, 1169
Antonjaya, Ungke 708, 716, 896
Anumudu, Chiaka I. 624
Anyona, Samuel 640, 1022, 1230
Anyorigya, Thomas 876
Apangu, Titus 419
Aparicio, Hugo 1201
Apiwathnasorn, Chamnarn 1220
Apollo, Duncan 458
Appawu, Maxwell A. 235
Apperson, Charles S. 780, 1097
Aradaib, Imad 404
Arana, Byron A. 869
Araujo, Sonia 165, 166, 533
Araújo, Sérgio F. 421, 872

A-2

The number(s) following author name refers to the abstract number

Araujo-Castillo, Roger V. 709
Araz, Engin 435
Arbiza, Juan 118
Arcà, Bruno 737
Arduin, Pascal 883
Areekul, Pannatat 637
Areerob, Jeeranun 702
Arévalo, Jorge 1202
Arevalo, Maria T. 11
Arez, Ana Paula 633
Arguello, D. Fermin 898
Arguin, Paul 212
Argumedo, Santos 888
Arheart, Kristopher L. 684
Ariey, Frederic 599, 611
Arinaitwe, Emmanuel 729, 944, 1050
Aristide, Ako A. 595
Arlian, Larry 854
Armien, Anibal 1107
Armien, Blas 113, 491, 1107
Armour, Doug 222
Armstrong, Tanya 401, 1204
Armstrong Schellenberg, Joanna 998
Arnold, Ute 424
Aroian, Raffi V. 1177, 1178
Aronson, Naomi E. 544
Arostegui, Jorge 733
Arriaga, Bustos 888
Arriagada, J. J. 1103, 1127
Arrigo, Nicole C. 318
Arrospide, Nancy 1026
Arrowood, Michael 287, 1140
Arthayapan, Thongdang 801
Arvelo, Wences 98, 463
Arvindakshan, Rajeev 280
Asafo Adjei, E. 28
Asante, Kwaku P. 28, 462, 473
Ashcraft, Deborah S. 274
Asher, Constance 978, 979, 980
Ashiegbu, Kelechi K. K. 67
Ashimogo, G. 438
Ashley, Elisabeth A. 966
Asih, Puji B. 196, 376, 1185
Asiimwe, Carol 395
Asinobi, Adanze 624
Asnis, Deborah 707
Asoala, Victor 876
Aspen, Stephen 671
Assadou, Mahamadoun H. 1005
Assaf, Ray 1178
Assane, Y. 438
Astete, Helvio 1089
Asuzu, Micheal C. 624
Ategeka, John 395
Athanazio, Daniel A. 425, 444, 446, 901
Ati, Abigael 99
Atibu, Joseph 1000
Atkinson, John P. 1208
Atta, Simon K. 1228
Atuguba, Frank 876
Aubouy, Agnes 1191
Audi, Allen 803

Augustinova, Andrea 156
Aure, Wilfredo E. 231
Avendaño-López, Adrián E. 1076
Avery, Vicky M. 163, 536
Avila, Mario 1107
Avila-Ramirez, Guillermina 437
Avilés, William 126, 388
Awadzi, Kwablah 1228
Awang Mohd, Tajul A. 1113
Aweeka, Francesca 575, 730
Awobode, Henrieta O. 624
Awobusuyi, Jacob 584
Awono-Ambene, Parfait H. 683
Ay, Hakan 543
Ayala, Diego 746, 1169
Ayele, Berhan 1003
Ayi, Kodjo 1209, 1214
Ayieko, Cyrus 1019
Ayres, Constancia F. J. 654
Azad, Abdu 927
Azevedo, Raimunda S. S. 721
Azizan, Azliyati 547, 1122

B

Ba-Fall, Fatou 967
Babacar, Faye 967
Babady, N. Esther 955
Babi, Nackson 419
Babu, Subash 381
Baby, Mounirou 1036
Bacchi, Cyrus J. 557, 1205
Bacellar, Olivia 355
Bacon, David J. 194, 197, 563, 632, 1014, 1025
Badiane, Malick 470, 471
Badolo, Athanase 1059
Baganizi, Edmond 870
Bagayoko, Mamadou W. 1004
Baggett, Henry C. 418, 800
Bai, Ying 265, 416
Bailey, Robin L. 1225
Baird, J. Kevin 196, 376
Baja, Abdallah 982
Baker, Joanne 959
Baker, Margaret C. 464, 528
Baker, Robert O. 479
Bakken, Russell 720
Bakshi, Rahul 762
Balachandra, Kruavon 958
Balderrama, M. 422
Baldi, Pierre 621
Baldini, Francesco 1069
Bales, Ashlee 161
Baliraine, Frederick N. 1002
Ballesteros-Rodea, Gilberto 562
Ballou, Ripley 25, 26, 27, 28, 646, 647, 1036
Balmaseda, Angel 14, 47, 126, 388, 705, 733
Balmer, Oliver 352
Balogun, Sulayman T. 574, 597
Balolong Jr., Ernesto 329, 1181
Balsitis, Scott 45, 127

Balu, Bharath 776, 931
Banania, JoGlenna 1034, 1037
Bandea, Rebecca 279
Bandi, Claudio 522
Bandyopadhyay, Kakali 279, 541
Banerjee, Camellia 602
Bangirana, Paul 85
Banic, Dalma M. 999
Baniecki, Mary L. 977
Banura, Patrick 73
Baraka, Omer Z. Mohamad Baraka 1095
Baraka, Vito 195
Barbara, K. A. 708
Barbosa, Taciana F. S. 723
Barends, Marion 200, 1123
Baret, Eric 972
Barger, Breanna 727
Barillas-Mury, Carolina 691, 1070, 1170
Barker, Christopher M. 256, 1092
Barker, Robert H. 190, 578, 579
Barletta, Francesca 103, 366, 367, 825
Barnafo, Emma K. 645
Barnard, Donald 251
Barnes, Karen 94, 950
Barnes, Kayla 772
Barnett, Elizabeth D. 868
Barnwell, John 408
Barnwell, John W. 347, 634, 639, 999
Barongo, Vivian K. 525
Barrantes, Melvin 1101
Barrera, Roberto 57, 123, 502
Barrett, Lynn K. 977
Barrett, Rebecca 472
Barria, Iván 713
Barron, Cedillo 887, 888
Bartholomay, Lyric C. 501, 809
Barungi-Nabukeera, Nicolette 1189
Basáñez, Maria-Gloria 134, 207, 250, 329, 334, 1148, 1149, 1155
Basco, Leonardo K. 198
Bashraheil, Mahfudh 571
Basilico, Nicoletta 976
Baso, Samuel 376
Bassett, Paul 1192
Bassolé, Imael H. N. 1059
Bastidas, Gilberto 465
Basu, Saikat 87, 88
Bates, P. 549
Baudin, Elisabeth 424
Bausch, Daniel 714, 1130
Bautista, Analisa 389
Bautista, Christian T. 269
Bawa, T. 28
Bayoh, Nabie M. 689, 690
Beach, Michael J. 1140
Beadell, Jon 53
Beatty, Mark 899, 900
Beatty, P. R. 119
Beatty, Robert 45, 127

Beatty, Wandy 811
Beaty, Barry 732, 833
Beau de Rochars, Madsen 141, 1154
Beavogui, Abdoul H. 950
Beck, Eric T. 507
Becker, Sara J. 275
Beckett, Charmagne G. 716, 896, 897, 1109
Beckett, Geoff 477
Beckius, Miriam L. 266
Beckonert, Olaf 363
Beeching, N.J. 549
Beeler, Emily 480
Beeson, James 326
Begum, Yasmin A. 365
Bei, Amy K. 1212
Beier, John 672, 684
Bejon, P. 26
Bekius, Miriam L. 275
Belenky, Alexei 523
Bell, David 959
Bell, Jeffrey A. 696
Bello, Felio J. 546
Bellofatto, Vivian 351
Belmar, E. 1103, 1127
Belmonte, Leonardo 871
Beltrán, Manuela 706
Ben Mamoun, Choukri 841, 938
Ben-Mahmoud, Sulley K. 235
Benavente, Luis 34, 209, 790
Benchimol, Carla 229
Bendezu, Herminia 552
Bendezu, Jorge 960
Benett, Adam 592, 631
Benjamin, Koudou G. 89
Bennett, Kristine 257, 845
Bennuru, Sasisekhar 382
Benoit, Joshua 750
Benton, Briana 479
Bentzel, David E. 272
Berganza, Elsa 777
Bergh, Anne-Marie 827
Bergman, Lawrence W. 1023
Bergmann-Leitner, Elke S. 2, 5, 326, 643, 647
Berman, J. 422
Bermudez, Sergio 480
Bern, Caryn 1201
Bernabe, Antonio 1129
Bernadino, Alice 920
Bernal-Rubio, Dabeiba 43
Bernhard, Sonja 542
Bernier, Ulrich R. 1087
Berrada, Zenda L. 781
Bertocchi, Ione 130
Besansky, Nora J. 679, 681, 1075, 1169, 1078
Besirbellioglu, Bulent A. 543
Besnard, Patrick 1219
Bessa, Marcia 901
Bessoff, Kovi 502
Best, Wayne M. 1204
Bethell, Delia 1120
Bethony, Jeffrey M. 133, 1175

Beverley, Stephen M. 353
Bezerra, Rômulo J. S. 919
Bharti, Praveen K. 1011
Bhat, Sajid 381
Bhatia, Ajay 564
Bhatia, Beena 431
Bhatta, Narendra 445
Bhatta, Nisha Keshary 447
Bhattacharjee, Apurba K. 583
Bhattacharya, Payel 553
Bhoi, Sanjeev 65, 80, 82
Bhonsle, Jayendra 581
Bhuiyan, Md. Saruar 415
Bianchi, Angela 173
Biasor, Moses 628
Bienvenu, Sirima S. 856, 877
Bier, Stacia 815
Biggerstaff, Brad 898
Bigogo, Godfrey 803
Bii, Christine 81
Bilak, Hana 216
Bilal, Alia 1160
Bilenge, Constantin M. 542
Billingsley, Peter 1
Bilong Bilong, Charles 531
Bimi, Langbon 223
Biollaz, Jérôme 170
Biritwum, Nana 464. 528
Birkenmeyer, Larry 961, 962, 963
Birnbaum, Ron A. 353
Birren, Bruce W. 47, 406, 1211
Biru Shargie, Estifanos 527
Bishop, Henry S. 287, 456, 1176
Bishwakarma, Raju 503
Biswas, Gautam 1112
Biswas, Sukla 341
Bittaye, Ousman 726
Black, Carla L. 302, 330, 358,
362, 788
Black IV, William C. 667, 1061, 1063, 1067,
Blackwell, Jenefer M. 161, 872
Blair, Carol D. 122, 489, 830, 833
Blair, Patrick 13, 426, 708, 716,
802, 896, 897, 1109
Blair, Peter 222
Blair, Silvia 981
Blank, W. A. 751
Blanton, Elizabeth 369
Blanton, Ronald E. 294, 673, 751
Blazes, David L. 320, 709, 719
Blitvich, Bradley J. 501, 809
Block, Olivia 486
Bloland, Peter B. 614
Bloomquist, Jeffrey R. 1216
Blum, Johannes A. 534, 542
Blum, Lauren S. 100, 101, 102, 368, 370
Boakye, Daniel A. 235, 253, 1228
Bobanga, Lengu T. 243
Bobenchik, April M. 841, 938
Bockarie, Moses J. 529, 607, 1112, 1115, 1158
Bockstal, Viki 1240
Bodhidatta, Ladaporn 801

Boelaert, Marleen 1180
Boele van Hensbroek, Michael 474
Boggild, Andrea K. 1202
Bohórquez, Elaine B. 539
Boivin, Michael J. 85, 337
Bojang, Kalifa 1190
Bojang, Kalifa A. 726
Bolarte, Jose 914
Bolas, Stefanie 100
Bolatti, Elisa 923
Bolduc, Kyle 537
Bolio-Gonzalez, Manuel 922
Bolla, Melissa 1124
Bolling, Bethany G. 833
Bonet Gorbea, Mariano 1150
Bongiorno, Gioia 693
Bonizzoni, Mariangela 1002
Bonjardim, Cláudio A. 117
Booker, Michael L. 523, 582
Boonlikit, Smin 801
Boonmar, Sumalee 416
Boonmars, Thidarut 181
Boonnak, Kobporn 10
Boonpheng, Samlit 957
Boore, Amy L. 101, 102, 370
Boppana, Venkata D. 258, 1172
Borba, Susan C. P. 161
Borchert, Jeff N. 419
Bore, Youssouf 1004
Borges, Marcos C. 116, 124
Borja, Artur 227
Borrmann, Steffen 171, 569, 764, 991
Borrow, Ray 264, 883
Bose, Tanima 553
Bosio, Christopher F. 782
Bosman, Andrea 173
Bosque-Oliva, Elisa 464
Botros, Sanaa 755
Bottero, Julie 210
Bottomley, Christian 1155
Bouckenooghe, Alain 386
Bougma, Roland 528
Bougouma, Edith 1017, 1031, 1041
Boulanger, Denis 324, 737, 1219
Boulos, Marcos 951
Bourgeois, Melissa 506
Bourguinat, Catherine 1156
Bourne, Nigel 499, 807
Bousema, Teun 31
Boussinesq, Michel 130, 1156
Boutros-Toni, Fernand 130
Bowen, Anna 20
Bowen, Richard 500, 511, 892
Bowers, Lisa C. 459
Bowling, Tana 538, 1205
Boyd, Alexis 141
Boyd, Kelley 43
Boykin, David 540
Boyle, Katharine 2
Boyom, Fabrice F. 187
Brabin, Bernard J. 605, 606
Brackney, Douglas E. 910, 1065

Bradley, Mark 1112, 1114
Brady, Mark 1201
Braghiroli, J. F. 751
Braig, Henk R. 925
Branch, OraLee H. 632, 653, 1045
Branco, Luis 714
Brando, Clara 648
Brasov, Ioana 555
Brasseur, Philippe M. G. 470, 471
Bratt, Carol L. 160
Brattig, Norbert W. 383, 429
Bray, Pat 1029
Breiman, Robert F. 100, 101, 102,
265, 368, 369, 370, 803
Breman, Joel G. 945
Brend, Sarah 1140
Bresson-Hadni, Solange 402
Bretscher, Michael T. 995
Brewoo, Joseph 892
Brey, Paul 121
Breysse, Patrick 1143
Briand, Valérie 210
Bridges, Michael 19, 875
Briggs, Benjamin J. 1110
Briggs, Deborah J. 718
Brindley, Paul J. 290, 301, 739
Briolant, Sébastien 972
Brion, Job D. 389
Britch, Seth C. 1058
Brito, Cristiana F. Alves de. 225, 1021
Brocard, Anne-Sophie 717
Broce, Candida 1107
Brooker, Simon 133, 464, 725
Brooks, John T. 826
Brooks, Mohamad I. 1006, 1008
Brown, Charles 223, 253
Brown, Emily L. 548
Brown, Graham 935
Brown, Ivy K. 910
Brown, Jessica 1135
Brown, Okoko 883
Brown, Theodore R. 700
Brown, William 1098
Brownstein, Michael 228
Bruce, Jane 997, 998
Bruder, Joseph T. 5, 6, 7, 644,
1034, 1037
Bruhn, Kevin W. 353
Brun, Reto 539, 974, 975
Brunetti, Enrico 400, 405, 443
Bruno, Lapied 1217
Brusentsova, Irina V. 678
Brustoski, Kim 529
Bruxvoort, Katia J. 956
Bryant, Juliet E. 121
Bryant, Naomi 852
Bualombai, Pongwit 957, 958
Buard, Vincent 424
Buathong, Rome 110
Bubb, Martin 959
Bucala, Richard 1231
Buck, Gregory A. 288
Buckingham, Donna W. 812

Buckner, Frederick S. 977, 1206
Buclin, Thierry 170
Buekens, Pierre 860
Bukirwa, Hasifa 576, 816, 1125
Bulimo, Wallace 799
Bulla, Lee 660, 1064
Bungiro, Richard D. 814
Bunin, Barry 180
Bunyi, Juancho 1096
Burgess, Steven J. 975
Burgess, Timothy H. 13, 426,
708, 716, 896, 897, 1109
Burk, Chad 621
Burke, Donald S. 48, 385
Burke, Heather 803
Burke, Martina 954
Burkot, Thomas R. 1114
Burns, Jr., James M. 1023, 1042
Burri, Christian 542
Busche, Jeff 670
Büscher, Philippe 539, 1202
Butler, Sara E. 297, 333
Butrapet, Siritorn 489
Buttenschoen, Klaus 402
Buzzar, Marcia 425, 444, 446
Byarugaba, Justus 85
Byass, Peter 173
Bygbjerg, lb C. 226, 328, 345
Byrd, Brian D. 664, 666, 849, 1083

C
C, Happi 949
Cabada, Miguel 109
Cabal, Ace Bryan S. 104, 288
Cabaret, Jacques 1156
Cabello, Martin 103
Cabezas, Cesar 485, 914
Cabrera, Lilia 278, 282
Cabrera-Mora, Monica 650
Caccone, Adalgisa 53, 683, 738
Caceda, Roxana 1100, 1128
Cáceres, Marcia 312
Cadena, Horacio 687, 744
Caffrey, Conor R. 303
Cai, Jenny 374
Caillouët, Kevin A. 255, 510, 849
Calavia Garsaball, Olga 701
Calderon, Claudia 59
Calderon, Maritza 1201
Calderon-Albor, Javier 39
Calderón-Arguedas, Olger 684, 1076
Calderwood, Stephen B. 365, 414, 415
Calis, Job C. J. 474
Calisher, Charles H. 1105
Call Ramon, Laia 701
Callacna, Miriam 468
Calvo, M 1127
Calzada, Jose 768, 1028
Cama, Rosa 282
Cama, Vitaliano A. 278, 282

A-4

Cameron, Emilie 1073
Camino, Isabel 586
Campagna, John D. A. 69
Campbell, Corey L. 667, 1108
Campbell, Karen M. 49
Campo, Joseph J. 6
Campos, Ciro 51
Campos, Francisco 704
Campos, Joseph 610
Canales, Marco 879
Canfield, Craig J. 973
Cantey, Paul T. 1118
Cantilena, Louis R. 182
Canto-Cavalheiro, Marilene M. 561, 920
Canyon, Deon 132
Cao, Jun 840
Cao, Wu-Chun 1167
Capeding, Maria R. Z. 386, 389
Cappello, Michael 814, 1231
Caputo, Beniamino 681, 693, 1168
Carabin, Hélène 38, 40, 41, 329, 1181
Carcamo, Alvaro 733
Carcamo, Cesar 1129
Cardona, María Teresa 454
Cardoso, Thiago M. 355
Carey, Cristian 316
Carey, James R. 734
Carlier, Paul R. 1216
Carlo, Costantini 1217
Carlone, George 264, 883
Carlow, Clotilde K. 515, 523
Carlton, Jane M. 224, 939
Carmo, Theomira M. A. 901, 902, 903
Carneiro, Ilona 96, 441
Carnevale, Pierre 1219
Carpenter, L. R. 551
Carret, Celine 773
Carretero Bellón, Juan 701
Carrion, Rebeca 316
Carrion, Ricardo 807
Carroll, C. Ronald 768
Carroll, Dustin 978, 979, 980
Carron, Alexandre 1221
Carron, Jaime 132
Carter, Chandra 1130
Carter, Jennifer M. 788
Carter, Nick 584
Carter, Robyn 703
Carter, T. 26, 27
Carvalho, Adriana V. 919
Carvalho, Edgar M. 161, 355, 784, 1203
Carvalho, Josiane S. M. 1203
Carvalho, Luzia H. 225, 1021
Carvalho, Valéria L. 315, 721
Casagrande, Manolo 976
Casandra, Debora R. 535
Casares, Sofia 1018
Casimiro, Sonia 234, 1052
Casseb, Lívia M. N. 723
Casseb, Samir M. M. 315

Cassone, Bryan J. 1075
Castañeda, Gutierrez 887
Castaneda, Lisa J. 977
Castañeda, Pablo 586
Castellarnau Figueras, Ester 701
Castellucci, Lea 161
Castillo, C 1103, 1127
Castillo, Carmen Elena 1220
Castillo, Leticia 113, 491, 777
Castillo, Maria Esther 704, 798, 825
Castillo, Roger M. 487
Castro, Bronislawa 425, 444, 446
Castro, Glenda 127
Castro, Ibraim C. 107
Castro, Luiza A. 116, 124
Castro, Martha I. 698
Castro-Llanos, Fanny 850, 1088
Catalan, Ana G. 1062
Catarino, Manuela B. 629
Catteruccia, Flaminia 1069
Cavalli, Anna 1180
Caviedes, Luz 798
Ceccato, Pietro 1003
Celatka, Cassandra 190, 579, 582
Celermajer, David 1183, 1194
Cen, Ye-Ying 280
Ceravolo, Isabela 1021
Cesa, Kristina 843
Céspedes, Manuel 1099
Cevallos, William 119, 413
Chadee, Dave D. 1072, 1074
Chaine, Jean-Paul 132
Chakravarty, Sumana 1
Chalwe, Victor 823, 829
Chambers, Eric W. 1114
Chambonneau, Laurent 386
Chan, Adeline 555
Chance, M.L. 549
Chandra, Richa 374
Chandramohan, Daniel 96, 441, 462, 820
Chandrawansa, P.H. 550
Chandre, Fabrice 765
Chansawang, Malee 1119
Chao, Day-Yu 496
Chapilliquen, Fernando 1088
Chapolla, Erica 425, 444, 446
Chaponda, Enesia B. 986, 988
Chareonsirisuthigul, Takol 483
Charlebois, Edwin 824
Charles, Richelle C. 414
Charman, Susan 1204
Charoenvit, Yupin 1018
Charret, Karen S. 561, 920
Charvet, Claude 1156
Chase, Michael 414
Chattopadhyay, Chandon 592
Chattopadhyay, Rana 1
Chauca, Gloria 709
Chauhan, Chitra 776
Chauhan, Kamal 242
Chaumont, Julie 264, 883
Chaussabel, Damien 379
Chavchich, Marina 467, 600

Chaves, Luis F. 29
Chavez-Nuñez, Leysi 844
Che, Julius 384
Checkley, Anna 954
Checkley Needham, Lisa 990
Cheeseman, Ian H. 773
Chen, Chang-Shi 1177
Chen, Daitao 537
Chen, Huiyuan 44
Chen, Hua-Wei 273
Chen, Honggen 357
Chen, John 928
Chen, Junhu 942, 968
Chen, Li 1178
Chen, Nanhua 600, 1121
Chen, Ping 5, 6
Chen, Wei-June 913
Chen, Yufeng 970
Chenet, Stella M. 632, 1014
Cheng, Changde 679
Cheng, Qin 600, 616, 959, 1121, 1122
Cheruiyot, Agnes 983
Chiang, Jannifer O. 721
Chiappe, Marina 1129
Childers, Thomas 489
Chilengi, Roma 23, 856, 1012
Chiller, Tom 826
Chim, Phektra 599
Ching, Wei-Mei 273
Chinh, Nguyen T. 449
Chinnawirotpisan, Piyawan 125
Chiodini, Peter L. 954
Chippaux, Jean-Philippe F. 871
Chishimba, Sandra 305, 393
Chitari, Sanika 771
Chitnis, Nakul 792
Chittaganpitch, Malinee 800
Cho, Pyo Yun 291, 292
Cho, Yoonsang 1231
Choi, Dongseok 278
Choi, Yong-Soon 942
Cholpol, Sawat 1119
Chootong, Patchanee 628
Chor, Tong 1160
Chotivanich, Kesinee 633
Chow, Lin H. 1040
Chowdhury, Fahima 365, 415
Choy, Henry A. 68
Chretien, Jean-Paul 710
Christensen, Bruce M. 428, 519,
521, 663
Christofferson, Rebecca C. 1090
Christophides, George 1078
Chua, Rowena 565
Chuang, Ilin 7, 1034
Chuang, Shu-Fang 492, 496
Chuenchitra, Thippawan 801
Chukwuocha, Uchechukwu M.

C. 67, 451

Chunsuttiwat, Supamit 891
Chuo, Ching-Yi J. 492
Churcher, Thomas S. 334
Cienfuegos, Astrid V. 686, 1077
Cimafranca, Rennan 115

Cisse, Badara 324, 737
Cisse, Moustapha 470, 471
Cissé, Ousmane 1004, 1027, 1182
Clague, Birgit 800
Clardy, Jon 582, 588, 977
Clark, Jeffrey W. 56
Clark, Tamara D. 84, 730, 818
Clarke, Sian E. 725, 820
Clayton, Joshua W. 1040
Cleary, Thomas G. 366, 367
Clem, Rollie 1133, 1134
Clennon, Julie A. 252, 305
Clode, Peta 401
Close, David 472
Coberly, Jacqueline S. 710, 867
Coetzee, Maureen 373, 1215
Coffey, Ruthie 962, 963
Cogswell, Ann C. 1105
Cohen, J. 25, 26, 27, 28, 646, 647, 1036
Cohen, Justin M. 205
Cohen, Sara B. 478
Cohuet, Anna 746, 1079
Coldren, Rodney L. 700
Cole-Tobian, Jennifer 639
Coleman, Michael 234, 373, 475, 771
Coleman, Marlize 373, 771
Colette, Colette 1204
Colin-Flores, Rafael 922
Colley, Daniel G. 302, 330, 358, 362, 788
Collins, Frank H. 664, 1078
Collins, Matthew H. 1196
Collins, Richard C. 1155
Coloma, Josefina 119, 127, 388, 733
Colón, Candimar 502
Coluzzi, Mario 681
Comach, Guillermo 1101
Comte, Eric 966
Congpuong, Kanungnit 957, 958
Conn, Jan E. 686, 698, 1077
Connors, Katherine J. 119
Conrad, Conrad W. 1209
Conroy, Andrea 1184, 1187
Contreras, Carlos 312
Contreras, Carmen A. 366
Conway, David 726, 735, 773, 793, 930, 933, 1016, 1168, 1229
Conway, Leslie 516
Cook, Earnest 458
Cook, Jackie 795, 997
Cooke, Brian M. 812
Cooper, Roland 760
Cooperband, Miriam F. 1087
Coosemans, Marc 567, 1051
Coppens, Isabelle 838
Corbel, Vincent 232, 233, 1221
Corbett, Yolanda 976
Cordero, Garcia 887, 888
Cordon-Rosales, Celia 808
Cornejo del Carpio, Juan G. 767

Cornel, Anthony J. 50, 241
Cornélie, Sylvie 737, 1093, 1219 Corradine, Giampietro 1017
Corrales, Rosa M. 926
Corran, Patrick 795, 997, 1016
Correa, Margarita M. 686, 698, 1077
Correa, Ricardo 1107
Correa-Oliveira, Rodrigo 133, 1175
Cortese, Joseph 190, 578, 579, 582, 977
Cortez, José 134
Cortez, Ricardo 255
Cosgrove, Shaun 1140
Coskun, Omer 543
Costa, Elenild 423
Costa, João 227
Costa, Peter J. 718
Costantini, Carlo 681, 746, 1169
Costanzo, Gianfranco 173
Cot, Michel 210, 1191
Coudeville, Laurent 391
Coulibaly, Cheick A. 866
Coulibaly, Drissa 25, 1036
Coulibaly, Mamadou 249, 679
Coulibaly, Michel E. 128, 129, 787, 789, 1232
Coulibaly, Sheick O. 605, 606, 619, 821
Coulibaly, Siaka Y. 128, 129, 787, 789, 1232
Coulibaly, Yaya I. 128, 129, 787, 789, 1232
Coulter, Christopher 703
Courtney, David 222
Coutinho, António 227, 229
Coutinho, Bruna P. 107
Cowan, Linda D. 40, 41
Cox, Jon 997
Cox-Singh, Janet 946
Crabb, Brendan S. 624
Craft, Noah 353
Craig, Philip S. 399, 403
Cravioto, Alejandro 365
Cretu, Carmen-Michaela 400
Criscione, Charles D. 1147
Crockett, Maryanne 322
Croda, Julio 68
Crompton, Peter D. 220, 325, 620, 621, 622, 623
Cromwell, Mandy 190, 578
Crookston, Benjamin 881
Crosby, Seth D. 432
Cross, Paul C. 1132
Crowley, Michael 1045
Crowther, Gregory J. 977
Crump, John A. 369
Cruz, Ana C. R. 315
Cruz, Cristhopher 1128
Cruz, Estrella I. 1096
Cruz, Karin 1088
Cruz, Rollin A. 709
Cruz-Chan, Vladimir 922
Cruz-Rivera, Mayra 437

Cserti-Gazdewich, Christine M. 1189, 1214
Cuamba, Nelson 1052
Cubillas, Luis 1088
Cuinhane, C. 438
Cuiza, A 1127
Cummings, Derek A. T. 48, 385
Cummings, James 646, 1036
Cundill, Bonnie 133, 725
Currie, Bart J. 52
Curto, Ernesto 766
Cysticercosis Working Group in Papua 439

D

D'Acremont, Valérie 394, 397, 577
D'Alessondro, Umberto 177, 323, 409, 567, 576, 605, 606,
619, 821, 823, 829, 994, 1051
d'Avila-Levy, Claudia M. 846
Da, Alida 40
Da, Ollo U. 306
da Silva, Ana Cristina A. 1176
da Silva, Alexandre J. 279, 287,
456, 541, 826, 1176
da Silva, Eliana V. P. 315, 721
da Silva-Nunes, Mônica 211
Dabire, Roch K. 1060, 1082, 1084
Dacso, Mara 61
Dadlani, Harsha 935
Daehnel, Katrin 380
Dagoro, Henry 1158
Dahal, Rajan Kumar 66
Dahal, Shaligram 503
Daher, André 951
Dahlbäck, Madeleine 641
Dai, Bui 449, 467
Daily, Johanna Patricia 349, 1211
Dal-Bianco, Matthias 199
Dala, Amadeu 542
Dalgaard, Michael B. 345
Daly, Thomas M. 1023
Damman, Christopher J. 977
Danboyi, J. 1117
Daniell, Cindy 279
Daniels, Rachel 772
Danjuma Goshit, D 1157
Dao, Adama 249
Dao, Hoang N. 12, 893
Daou, Modibo 25, 1036
Dara, Antoine 727
Dargelas, Valerie 1142
Darriet, Frédéric 232, 1221
Das, Debanjana 553
Das, Satadal 87, 88, 553
Das, Suchismita 1137
Dasch, Gregory A. 417, 480, 777
Dash, Aditya P. 224, 341, 602,
984, 992, 1006, 1008, 1011
DaSilva, Alexandre 1143
Dat, Tran V. 12

Davenport, Gregory 339, 371,
640, 936, 937, 1022, 1230
David, Jean-Philippe 232
Davidyants, Vladimir 206
Davies, Stephen J. 303, 757
Davis, Timothy M. E. 946, 1195
Davis, Xiaohong 461
Dawes, Emma J. 207, 250
Dawson, George 961, 962, 963
Day, Nicholas P.J. 633
Ddungu, Henry 1189
De, Dibyendu 580
de Almeida, Marcos 541
de Groot, Philip G. 1185
de Jesus, Amelia R. 161
de la Rua, Nicolas 843
de Mast, Quirijn 1185
de Oliveira, Ana L. 1045
de Rivera, Ivette 1101
De Sousa Dias, Marcia C. 872
de Souza, Dziedzom K. 253
de Vlas, Sake J. 360, 1159, 1167
De-Simone, Salvatore G. 999
Deardorf, Eleanor 9
Dearen, Theresa 1140
Debache, Karim 1144
DeBaene, Kelly 1098
Deborggraeve, Stijn 1202
Debrah, Alexander Y. 383
Debrekyei, Yeboah M. 383
DebRoy, Sruti 158, 916
Decosterd, Laurent A. 170
Dedmon, Robert E. 718
DeJong, Randall 1170
Dejsirilert, Surang 418
Delgado, Christopher 596
Delgado, Franklin 1099
Delgado, I. 1127
Della Torre, Alessandra 681, 693,

1069, 1168

Dellicour, Stephanie 609
Delorey, Mark J. 512
Deloron, Philippe 77, 1191
DelVecchio, Vito 2
Demas, Alisson 349
Dembele, Benoit 128, 129, 787,
789, 1232
Dembélé, Massitan 528
Demettre, Edith 1093
Deming, Michael 335
Demoitie, M.A. 26, 27, 28
Denery, Judith R. 740
Deng, Haiyan 580, 761
Dengue Group, CIETNicaragua 733
Denlinger, David L. 655, 750, 1138
Denslow, Nancy 506
Dent, Arlene 326, 625, 651, 1020
Deo, Gratias K. 542
DePasse, Jay 520
DeRisi, Joseph L. 336
Deriso, Elizabeth 2
Desai, Anita 834, 905
Desai, Meghna 72

Desai, Suresh 961, 962, 963
Desai, Sanjay A. 221
Desprès, Philippe 805
Desta, Alem 173
Deus, Kelsey M. 770
Deus, Lígia 229
Devine, Gregor J. 766
Devore, Casey 1134
Dewa, Priscillia 874
Deye, Gregory 458
Deyrup, Leif 477
Dhabangi, Aggrey 1189
Dhakal, Subodh. S. 445
Dhepaksorn, Panadda 958
Dhir, Soumendra 1118
Di Deco, Maria Angela 681
Dia-Eldin, Elnaiem A. 866
Diabate, Abdoulaye 1082
Diakité, Mahamadou 985
Diakite, Seidina A. S. 220, 787
Diallo, Aldjouma 883
Diallo, Abdallah A. 24, 25, 128, 129, 787, 789, 1005, 1036, 1232
Diallo, Ibrahima 967
Diallo, Mawlouth 1106, 1165
Diallo, Souleymane 797
Diamond, Michael S. 804
Diarra, Amidou 1031, 1041
Diarra, Issa 25, 1036
Diarra, Souleymane S. 866
Dias, Gutemberg H. 872
Dias, Sajani 1032
Diassiti, Angelina 322
Diaz, Annette 57
Diaz, Francisco J. 497, 899
Diaz, Luis 468
Diaz, R. 1127
Diaz Lujan, Cintia M. 923
Díaz Toro, Yira R. 545
Dickerson, Tobin J. 740
Dicko, Alassane 24, 584, 1005
Dicko, Idrissa 1082
Dickson, Anne M. 350
Dida, Gabriel O. 699, 1056
Didier, Elizabeth S. 459
Didier, Yapi J. 595
Diemert, David J. 1175
Diene, Cheikh O. 1165
Dieppa, Migda M. 488
Dietz, Klaus 1190
Diggs, Carter 5, 7, 25, 646, 647,
965, 969, 1034, 1036
Dille, Bruce 962, 963
Dillip, Angel 396, 573
DiMiceli, Lauren 279
Dimopoulos, George 428, 1071, 1137
Ding, Dazhong 162
Dinglasan, Rhoel R. 30
Dinkel, Anke 404
Dion, Kirstin B. 683
Diouf, Ababacar 5, 652, 1015
DiSanto, Michael E. 565
Disinor, Olbeg 592

Dissanayake, Gunawardena 816
Dituvanga, Ndinga D. 542
Diuk-Wasser, Maria 697
Dixit, Rajnikant 1070
Djerea, Khali D. 595
Djibo, Ali 1223
Djibril, Djibril 296
Djimde, Abdoulaye A. 569, 727, 950, 987
Djogbénou, Luc 765, 1218.
do Rosario, Virgilio E. 633
do Valle, Suiane 951
Dobler, Gerhard 310, 494
Doemling, Alexander 755
Dogcio, Diane 76, 86, 92, 448
Doha, Said A. Doha. 442
Dohm, David 695
Dolecek, Christiane 633
Dolo, Amagana 24, 25, 1036
Dolo, Housseini 128, 129, 787, 789, 1232
Domingo, Cristina 118
Dominguez-Galera, Marco 1066
Dominici, Francesca 112
Don, Robert 162, 537, 538, 1204, 1205
Donoso, S. 1103, 1127
Doolan, Denise L. 5, 6, 7, 621, 644, 1034, 1037
Doranz, Benjamin J. 495
Doritchamou, Justin 1191
Dorman, Karin S. 809
Dorn, Patricia L. 59, 60, 566, 843
Dorny, Pierre 41
Dorsey, Grant 84, 395, 575, 591, 598, 729, 730, 816, 818, 822, 944, 1050, 1125
dos Reis, Camilla M. 919
dos Santos, Helena 279
Dosoo, D. 28
Dosoo, David 462, 473
Douce, Richard 1101
Doucoure, Souleymane 1093
Doumbia, Seydou 220, 866
Doumbia, Salif S. 128, 129, 787, 789
Doumbo, Ogobara K. 24, 25, 94, 220, 325, 620, 621, 622, 727, 950, 987, 1005, 1036
Doumbo, Safiatou 220, 325, 620, 621, 622
Doumtabe, Didier 220, 325, 620, 622
Dow, Geoffrey 189, 970, 979
Downie, Megan J. 841
Downing, Marian 717
Dozie, Ikechukwu N. S. 67, 451
Drakeley, Chris 26, 31, 32, 601, 795, 993, 997
Drame, Papa M. 1219
Draper, Michael P. 431
Drolet, Barbara S. 845
Druilhe, Pierre 23, 1012
Duarte, Paula V. 421
Duarte-Madrigal, Adriana 1076

Dubhashi, Nagesh 374
Dubischar-Kastner, Katrin 836, 908
Dubois, Marie-Claude 25, 26, 27, 646, 647, 1036
Dueger, Erica 777
Duffull, Stephen 1183, 1194
Duffy, Michael 935
Duffy, Patrick E. 743, 1124
Duggan, Hannah 1130
Dujardin, Jean-Claude 1202
Dumonteil, Eric 59, 566, 844, 860, 922
Duncan, Elizabeth H. 643
Dunlap, Brett G. 478, 551
Dunn, John R. 478, 551
Dunne, David W. 300, 359
Dunne, Michael 374
Duparc, Stephan 584, 764
Duraisingh, Manoj T. 1212
Durand, Patrick 206
Durbin, Anna P. 22, 642
Durieux, Laurent 685
Durrheim, David 373
Durvasula, Ravi 1146
Dutra, Juliana M. F. 55
Dutta, Sheetij 25, 646, 839, 1036, 1040
Dvorak, Jan 303
Dwyer, Dennis 157
Dzik, Walter H. (Sunny) 1189
Dzinjalamala, Fraction K. 728, 989

E

Eamsila, Chirapa 801
Easterbrook, Judith D. 313
Ebel, Gregory D. 504, 910
Eberhard, Mark 456, 826
Ebonyi, Augustine 930, 1016
Echevarria, Áurea 561, 919
Echeverri, Fernando 981
Ecker, Lucie 367
Eckert, Erin 217, 1009, 1054
Edgil, Dianna 899
Edillo, Frances 115
Edith, Bougouma 856, 877, 1035
Edstein, Michael D. 449, 450,
467, 973
Edu, Arcardio 738
Edwards, Morven S. 375
Edwards, Tansy 1225
Egbe, John 193
Egyir, Beverly 223
Eigege, Abel 335, 874, 1117, 1157
Eisele, Thomas P. 592, 631, 794
Eisen, Lars 732, 771, 833, 1066
Eisenberg, Joseph 119, 364, 413, 1164
Ejigsemahu, Yeshewamebrat 35, 1003
Eko, Francis O. 917

El Awad, Raya A. E. 1095
El Bissati, Kamal 841
El Karib, Samia A. Abdella 1095
El Setouhy, Maged A. 131, 1112
El Tigani, Rahma 131
El-Hossary, Shabaan S. I. 54, 847
El-Sayed, Badria B. 346
El-Shehabi, Fouad 741
Elamin, Mohamed 404
Elder, John 894
Eldridge, Bruce F. 1092
Elguero, Eric 685
Elie, Cheryl 264, 883
Elisante, R. 438
Elizondo-Quiroga, Darwin 732
Elling, Berty F. 614
Ellis, Brett R. 907
Ellis, Magda K. 357, 399
Ellis, Ruth D. 22, 24, 622, 642,
1005, 1039
Elmahdi, Ibrahim 404
Elmendorf, Heidi G. 281
Elnahas, Ayman 404
Elnaiem, Dia-Eldin 921, 918
Elufioye, Taiwo T. 453
Emerson, Paul M. 35, 216, 335, 1003, 1157
Enabulele, Onaiwui 151
Endeshaw, Tekola 35, 216, 1003
Endy, Timothy P. 120, 484, 891
Enevold, Anders 328
Enscore, Russell E. 419
Enyong, Peter 384
Epstein, Judith E. 7, 1034
Epstein, Paul R. 78
Erasmo, Jonathan Neil 115
Erasmus, Panna 377
Erb, Steven M. 489
Erdman, Dean D. 800
Erdman, Laura 1200
Eremeeva, Marina E. 480, 777
Erhart, Annette 409, 567, 994, 1051
Erickson, Sara 428, 519, 521
Ernst, Sylvia 180
Esamai, Fabian 764
Esan, Michael O. 476
Escalante, Ananias A. 198, 214,
343, 408, 594, 1033
Escobar, Gustavo 981
Esfandiari, Javan 68
Eshita, Yuki 8
Espérance, Ouédraogo 856, 877, 1035
Espinosa, Avelina 813
Espinosa, Benjamin J. 563, 632, 1014, 1025
Espinosa, Diego 1202
Espinoza, Manuel 914
Essbauer, Sandra 494
Esteban, Margarita T. 273
Estrada, Gabriela 1083
Etienne, Manuel Etienne 1221
Etouna, Joachim 1169
Etsane, Elsie 827

Ettyreddy, Damodar 6
Euan-Gracia, Maria 844
Evans, A. 950
Evans, J. 28
Ewers, Christina 1140
Eyase, Fred 983
Eyong, Ebangha Joan 384
Eyzaguirre, Eduardo J. 1126
Eza, Dominique 272
Ezedinachi, Emmanuel 764

F

Facchinelli, Luca 693
Factor, Stephen M. 558, 565
Fae, Kellen C. 161
Fagbenro-Beyioku, Adetayo F. 191
Fahmy, Adel R. Fahmy 442
Fair, Joseph 714
Fairfax, Keke C. 814
Fairhurst, Rick M. 220
Falade, Catherine O. 79, 172, 174, 398, 948
Falendyz, Elizabeth 1161
Famenini, Shannon 861
Famulok, Michael 515
Fan, Erkang 977
Fang, Chi-Tai 114, 482
Fang, Y. 256
Fansiri, Thanyalak 734
Faragher, Eric B. 474
Farfan-Ale, Jose Arturo 732, 809
Farombi, Olatunde 948
Farooq, Muhammad 1058
Farrar, Jeremy 1224
Farraye, Francis A. 1151
Faruque, Abu S. G. 365, 415
Farzelli, A. 708
Fatmi, S. Nadeem 18
Faucher, Jean-François 77, 1191
Fávero, Camila A. 116, 124
Fawaz, E.Y. 847
Fay, Michael P. 22, 24, 642
Faye, Ngor 1165
Faye, Ousmane 866, 1106, 1165
Featherstone, David A. 834
Fedders, Charlotte 7
Fedorko, Daniel 420
Feikin, Daniel R. 100, 101, 102,
$368,370,372,615,803$
Felger, Ingrid 995
Felgner, Philip L. 621
Felices, Vidal 1100
Feng, Dan 1167
Fentie, Gashu 216
Fenwick, Alan 308, 752
Ferdig, Michael T. 990, 1123
Ferguson, Heather 247
Fernández, Janett 240
Fernandez, Kate 812
Fernandez, Miguel 709
Fernández, Olga L. 466
Fernandez, Roberto 850

Fernandez-Salas, Ildefonso 1066
Fernandez-Sesma, Ana 43
Ferrari, Marilyn E. 1037
Ferraz, Gonçalo 51
Ferreira, Carolina 71
Ferreira, Marcelo U. 225, 634
Ferrell, Robert 640, 1022, 1230
Ferrer, Pablo 1103
Ferrer, Santiago 590
Ferrés, Marcela 713, 1103, 1127
Ferro, Cristina 687, 744
Ferrufino, Lisbeth 1201
Ferruti, Paolo 30
Fieck, Annabeth 1146
Fiestas, Victor 485
Fife, Amy M. 523
Figueroa, Dana 906, 914
Figueroa, Maria Elena 99
Figueroa, Roger 454
Figueroa-Angulo, Elisa 164, 556
Fijnheer, Rob 1185
Filice, Carlo 405, 443
Filipe, Joao A. N. 32
Filler, Scott 93, 216
Fillinger, Ulrike 259, 688
Fillol, Florie 324
Findlow, Helen 264
Findlow, Jamie 883
Fine, Donald 62, 720
Finney, Constance 1187, 1198
Finney, Olivia 1229
Fischer, Kerstin 522
Fischer, Peter 429, 433, 522, 1112, 1113
Fitoussi, Serge 568
Fitzpatrick, Kelly A. 910
Fitzpatrick, Nicole 126, 388
Fitzsimmons, Colin M. 300
Fleckenstein, Lawrence 457, 851, 855
Flisser, Ana 39, 437
Florencio-Martinez, Luis E. 164, 562, 556
Flores, Adriana E. 1061, 1063, 1067
Flores, Diana 127
Flores, Rosemary 356
Flores Leon, Amilcar A. 554
Flores-Flores, Luis 732
Flores-Mendoza, Carmen 850, 1088
Flores-Perez, Carlos 164
Florey, Lia S. 996
Florin, David 850, 1088
Fobia, W. 796
Focks, Dana A. 1091
Fofana, Abdrahamane 50
Fogako, Josephine 1015
Folarin, Onikepe A. 597
Foley, Jonathan A. 685
Fondjo, Etienne 50
Fongang, René S. 187
Fonnie, Richard 1130
Fonseca, Benedito A. L. 116, 117, 124

Fonseca, Dina M. 1073, 1086
Fonseca-Coronado, Salvador 437
Fontaine, Michael C. 746
Fontenille, Didier 746, 1079, 1169
Fontes, Erica 22
Foppa, Ivo 255, 509, 510
Ford, Louise 430, 431
Ford-Jones, E. Lee 262
Fornadel, Christen M. 252
Forrat, Remi 386, 387
Forrest, Gerry 989
Forshey, Brett M. 272, 316, 1099
Fortes, Filomeno 71, 1219
Foster, Jeremy 516, 518
Foster, Stanley O. 524
Foster, Woodbridge A. 736
Fottrell, Edward 173
Foumane, Vincent 1219
Fournier, Didier 233
Fox, Ashley M. 828
Fox, LeAnne 136, 1118
Foxman, Betsy 413
Foy, Brian D. 667, 769, 770, 1065, 1108
Fracisco, Susan 758
Fraga, Lucia A. 303
Francis, Filbert 23, 195
Franco, Jose R. 542
Franka, Richard 265
Franz, Alexander W. E. 122, 1085
Frédéric, Pagès 1217
Fredrik, Fredrik 716
Freeman, Jennifer C. 537
Freeman, Randall J. 711
Freilij, Hector 923
Freire, Janaine 1175
Freitas, Gisele D. 423
Fremont, Daved H. 804
Frempong, Kwadwo K. 235
French, Michael D. 334
Frenkiel, Marie-Pascale 805
Fretes, Ricardo E. 923
Freund, Yvonne 162, 1205
Freye, J. D. 478
Friberg, Heather L. 889
Fried, Michal 743, 1124
Friedman, Jeffery 581
Friedman, Jennifer F. 331
Frontado, Hortencia L. 134
Fry, Alicia 800
Fryauff, David 876
Frye, Tyler 743
FSS Peruvian Working Team 1099
Fuchs, Jeremy 519, 521, 663
Fugmann, Burkhard 450
Fukuda, Mark 327, 997, 1120
Fulhorst, Charles F. 1126
Fuller, Douglas O. 684
Furman, Barry D. 54, 847
Furuya, Tetsuya 939
Fusai, Thierry 972
Futami, Kyoko 699, 1056

Gab, Siew 1193
Gabor, Julian 199
Gaboulaud, Valerie 1223
Gadalla, Nahla B. H. 346
Galagan, James E. 1211
Galán Herrera, Juan F. 387
Galappaththy, Gawrie N. L. 226
Galdos, Gerson 1201
Galeno, H. 1103
Galinski, Mary R. 999
Gall, Jason 644
Gallego-Gomez, Juan C. 498
Gallegos, Juan 118
Galloway, Renee L. 266
Galvani, Alison 697
Gálvez, Hugo 272
Gambhir, Manoj 137
Gamboa, Dionicia 559
Gamboa-Leon, Rubi 860
Ganaba, Rasmané 40, 41
Ganesan, Shobana 857
Ganeshan, Harini 1034, 1037
Gangnon, Ronald 685
Ganley-Leal, Lisa M. 362, 1151
Gansané, Adama 1017, 1031, 1041
Gao, Qi 245
Garba, Amadou 464
García, Adolfo 590
Garcia, Andres J. 1091
Garcia, Enid 898
Hector H. Garcia 440
Garcia, Josefina 269, 1101
Garcia, Josselyn 417
García, Juan 706
García, Maria 485, 914
Garcia, Paquita 118
Garcia, Patricia 1129
Garcia Rosa, Miryam 190
Garcia-Rejon, Julian E. 732, 809
Garcia-Sastre, Adolfo 43
Gardon, Jacques 1156
Gargallo-Viola, Domingo 586,
587, 590, 706, 971
Garner, Jason 799
Garrido, Fàtima 113, 491
Garry, Robert 714
Garten, Rebecca J. 802
Garuti, Helen 586, 587
Gatei, Wangeci 214, 1033
Gatlin, Michael R. 358
Gatton, Michelle 600, 616, 1121
Gausi, Khoti 216
Gautam, Sant P. 1011
Gaye, Oumar 470, 471, 967
Gaywee, Jariyanart 267, 801
Gbotosho, Grace O. 574, 597, 974
Gbotosho, Sola 174
Geary, Timothy 140
Gebre, Teshome 35, 216, 527, 1003
Gebregeorgis, Elizabeth 1047

Geiger, Stefan M. 133
Geisbert, Joan 714
Geisinger, Frank 383
Gelb, Michael H. 977
Geldof, Sarah 296
Genestra, Marcelo 919
Genton, Blaise 170, 394, 397, 577, 585, 947
George, Phillip 675
Gerena, Lucia 176, 583, 970, 979
German, Polina 575
Gerstoft, Jan 155
Gesase, Samuel 23, 26, 96, 441, 601
Geske, Jon 714
Getachew, Asefaw 35, 216
Getis, Arthur 49
Gettayacamin, Montip 758, 970
Getz, Wayne M. 1132
Ghabri, Salah 424
Ghani, Azra 31, 32, 795, 997
Ghebreyesus, Tedros Adhanom 35, 1003
Ghedin, Elodie 520
Ghersi, Bruno M. 309, 320, 719
Ghorashian, Sara 424
Ghosh, Anil K. 30
Ghosh, Kashinath 925
Gibbons, Robert V. 48, 125, 385, 389, 891
Gicheru, Michael M. 788
Gies, Sabine 605, 606, 619, 821
Gil, Ana I. 367
Gilbert, Alexa 483
Gilman, Robert H. 278, 282, 440, 798, 1201
Gilpin, Christopher M. 703
Gimnig, John E. 214, 689, 690, 1033, 1052
Giraudoux, Patrick 403
Girouard, Autumn 1143
Gitawati, Retno 1183, 1194
Githeko, Andrew K. 603, 1002
Githure, John I. 672
Gladwin, Mark 1182
Glass, Gregory E. 112, 713, 1107
Glass, Pamela 62
Gleeson, Todd 95
Gleim, E. 532
Glen, Jacqueline 3, 1038
Glenn, Justin D. 747
Glennon, Erin G. 273
Goade, Diane 504
Goba, Augustine 714, 1130
Gobern, Lorena 777
Gobert, Geoffrey N. 399, 739, 753
Godeaux, Olivier 25, 647, 1036
Godoy, P. 1103
Goel, Ashish 65, 80, 82
Goel Venugopal, Priyanka 379
Goethert, Heidi K. 779, 781
Goez-Rivillas, Yenny 899, 900
Goh, Li-Ean 179, 584
Goldin, Robert 1224

A-8

Gomes, Adriana 920
Gomes, Melba 570
Gomes, Regis 866, 918, 921
Gomes-Ruiz, Alessandra C. 117
Gomez, Giovan F. 698, 1077
Gómez, Jorge 1099, 1101
Gomez, Tangni 47
Gómez, Vanesa 586, 587
Gomez-Carro, Salvador 732
Gomez-Escobar, Natalia 773, 930, 1016
Gomez-Hurtado, Claudia M. 556
Goncalves, Loredana 166
Gonçalves, Lígia A. 227, 629
Gonul, Engin 435
Gonzales, Armando E. 309, 440
González, Anajulia 165
Gonzalez, Adalberto 552
Gonzalez, Armando E. 719
González, John J. 698
Gonzalez, Publio 1107
Gonzalez, Rosa I. 719
Gonzalez-Martinez, Pedro 732
Gonzalez-Ramirez, Claudia 860
Gordon, Aubree 14, 47, 126, 388, 705
Gore Saravia, Nancy 915
Goshit, D 874, 1117
Gosling, Roly D. 32, 96, 441
Goto, Yasuyuki 564
Gottdenker, Nicole L. 768
Gotuzzo, Eduardo 109, 1099
Goud, Gaddam 815
Goud, Ravi 1009
Gould, J. 26
Gourbière, Sébastien 844
Gourmel, Bernard 77
Gouvras, Anouk N. 308
Gowda, D. Channe 1187
Gowda, Kalpana 5, 1037
Gracia, Fernando 1107
Graczyk, Thaddeus 1143
Graeff-Teixeira, Carlos 1176
Grainger, John R. 1243
Grainger, Munira 624
Grais, Rebecca F. 1223
Gramajo, Rodrigo A. 869
Granger, Don 1194
Granger, Stewart P. 17, 263
Graves, Patricia M. 35, 216, 527, 1003
Gray, Michael 269
Green, Clare 688, 793
Green, Justin A. 269
Green, Sharone 484
Greenaway, Christina A. 1227
Greenfield, Joann 212
Greenhouse, Bryan 598, 818
Greenwald, Rena 68
Greenwood, Brian 28, 96, 324,
441, 462, 584, 726, 764
Gregory, Kellan 180
Grewal, Paul 2
Grieco, John P. 242, 260, 850
Grieser, Heather 472

Griffin, Jamie 32, 795, 997
Griffin, Jennifer B. 1000
Griffing, Sean M. 408
Griffith, Kevin S. 419
Griffith, Matthew E. 275
Griffiths, Kathryn 519, 521
Grijalva, Mario J. 51, 417
Griko, Natalya 660, 1064
Grillet, Maria Eugenia 134
Grisolia, Antonella 405
Grobusch, Martin 199
Grobusch, Martin P. 400
Groot, Evelyn 1185
Gruener, Beate 400, 402
Gryseels, Bruno 364, 1150
Gu, Weidong 1080
Gu, Yuanchao C. 185
Guan, Zhong 1075
Guclu Kilbas, Zeynep 435
Guégan, Jean-François 685
Guelbeogo, Wandaogo M. 1059
Guerin, Bruno 402
Guerin, Philippe J. 966, 1223
Guerra, Bruna M. 1021
Guerra, Humberto A. 878
Guerrant, Richard L. 104, 107, 288
Guevara, Carolina 312, 1099, 1100, 1128
Guiguemdé, Robert 764, 1082, 1084
Guimarães, Ana 430
Guimarães, Luiz H. 161, 1203
Guindo, Amadou 249
Guindo, Aldiouma 220, 787, 1005
Guindo, Ando B. 25, 1036
Guindo, Boubacar 787
Guindo, Merepen A. 24, 787, 1005
Guindo, Ousmane 24
Guionaud, Christophe Guionaud 1144
Guirado Sayago, Esther 701
Guirou, Etienne 94, 987
Gul, Hanefi C. 543
Gule, C. 438
Gunasekera, Anusha M. 1, 228
Gunsaru, Bornface 975
Guo, Jia G. 403
Gupta, Lalita 1070
Gupta, Priti 1006
Gupta, Richi 815
Gupta, Shuchita 530
Gupta, Shweta 530
Gupta, Vineet 80, 82
Gurley, Emily S. 319, 712, 715, 1131, 1222
Gürtler, Ricardo E. 58
Gut, Jiri 187
Gustiani 896
Gutierrez, Escobar 887
Gutiérrez, José M. 1076
Gutiérrez, Lina A. 686, 698, 1077
Gutierrez, Sonia 1026

Gutiérrez, Victoria 118, 485, 914
Gutiérrez-Espeleta, Gustavo 1076
Gutteridge, Clare E. 583
Guttieri, Mary 714
Gwanmesia, Philomina 1015
Gyapong, John 462, 1228

H

Ha, Do Q. 12, 893
Haag, Karen L. 654
Haake, David A. 68
Haaland, Ane E. 1055
Habbanti, Shadrack 252
Habbema, J. D. F. 1159
Hackett, Caroline 222
Hadi, Azam 761
Haerter, Georg 400
Hafy, Zen 13, 716, 896
Hahn, Matthew W. 679
Haidara, Fadima C. Coulibaly 264, 883
Haider, M. Sabbir 1222
Hailemariam, Afework 35, 1003
Haissman, Judith M. 155
Halder, Amal K. 17, 263
Hale, DeVon C. 460, 881
Hall, Andrew 1148, 1149
Hall, Eric R. 109, 269, 367
Hall, Nancy 1140
Hall, Peter 17
Haller, Alla 962, 963
Hamade, Prudence 966
Hamel, Mary 72, 214, 372, 615, 826, 1033
Hamer, Davidson H. 602, 1006, 1008
Hamer, Gabe 1098
Hamilton, Melissa 644
Han, Eun-Taek 942, 968
Han, Pauline 461
Hanafi, Hanafi A. 54, 847
Kathy Hancock 440
Handali, Sukwan 439, 440, 532
Handunnetti, Shiroma M. 1032
Hanlan, Liu 578, 579
Hanley, Kathryn A. 9
Hanlon, Cathleen A. 718
Hanson, Kara 169, 998
Hansson, Helle H. 328
Hao, Bing 938
Happi, Christian T. 174, 574, 597, 974
Hapuarachchi, Hapuarachchige C. 593

Haque, Rashidul 277, 289
Haraoui, Louis-Patrick 544
Hardesty, Doug 222
Harding-Esch, Emma 1225
Harnett, Margaret 1151
Harnett, William 1151
Harrell, Emma 584
Harrington, Whitney E. 1124

Harris, Aaron M. 365, 415
Harris, Caroline 1079
Harris, Eva 14, 45, 47, 126, 127,
388, 495, 705, 733
Harris, Jason B. 365, 414, 415
Harris, Juliana V. 1208
Harris, Maghan 1140
Harris, Stephanie 1140
Harrison, Lisa M. 814
Hart, Mary Kate 720
Hartl, Daniel L. 406, 634, 1211
Hartsel, Joshua A. 1216
Hartzell, Joshua D. 95
Harvey, William R. 1171
Hasan, Che Abdullah 1179
Hasanuddin, A 796
Hashim, Kamal 1160
Hashim, Ramadhan 96
Hashmi, Ahmar H. 602
Hasing, Maria Eloisa 1164
Haskell, Jacquelyn N. 353
Hassan, Adiba 880
Hassan-King, Musa 264
Hassanali, Ahmed 81
Hategekimana, Celestin 148
Havlir, Diane 575, 824
Havryliuk, Tatiana 604
Hawkes, Michael 322
Hawkins, Vivian N. 593
Hawley, Joshua A. 275
Hawley, William A. 214, 1033
Hayden, Mary H. 57
Hayes, Daniel J. 731
Hayes, Siobhan 179
Haynes, J. David 839
Haynes, Richard K. 450
Hayton, Karen 774
Headley, Virginia 799
Hebbar, Santosh 1226
Heinz, Michael 429, 432, 427, 429
Helber, Sarah 62
Helbok, Raimund 1190
Helve, Tapani 317
Hemingway, Janet 234, 475, 1215
Hemme, Ryan R. 1074
Hemphill, Andrew 286, 402,
1144, 1145
Hencke, Jan 289
Henderson, Ralph 1112
Hendricks, A 950
Hendrix, Craig W. 762
Henn, Matthew 47, 123
Henriques, Daniele F. 721
Henry, Cara N. 607
Henttonen, Heikki 722
Heppner, D G. 25, 646, 647, 969, 1036
Herbein, Joel 289
Hernandez, Ariosto 1107
Hernandez, Carlos 733
Hernandez, Roger 704
Hernandez, Vincent 162
Hernandez, Y 1127

Hernández-Osorio, Luis A. 562
Herrera, Eugenia 943
Herrera, Raul 3
Herrera-Aguilar, Melba 844
Herreros, Esperanza 971
Herwaldt, Barbara L. 541
Hess, Ann M. 667
Hettiarachchi, Gaya 222
Hetzel, Manuel 396, 573
Hickey, Patrick W. 610
Hickman, Merrit 3
Hidayatullah, N. 708
Hien, Tran Tinh 633
Higgs, Stephen 513, 1111
Hightower, Allen W. 212, 689, 690
Hill, David R. 852
Hillyer, Julián F. 659, 747
Himley, Steven 875
Hinkle, Mary K. 269
Hinnebusch, B. Joseph 782
Hinrichs, Dave 760
Hira, Parsotam R. 1226
Hirabayashi, Naomi 1044
Hirayama, Kenji 12, 893
Hirunkanokpun, Supanee 238
Hise, Amy G. 380, 529
Hitchcock, David 17
Hittner, James B. 339, 371, 936
Hjelle, B 1103, 1127
Hlavsa, Michele 1140
Hoar, Sandy 244
Hobbs, Maurine R. 881
Hocart, Simon J. 580
Hoch, Jeffrey C. 938
Hochman, Sarah 928
Hodanics, Charles J. 867
Hodel, Eva Maria 170
Hodgson, Abraham 876
Hodson, Cheryl 975
Hoekstra, Robert M. 20, 106
Hoel, D. F. 847
Hoerauf, Achim 383, 515
Hofer, Sandra 974
Hoffman, Benjamin U. 228
Hoffman, Nelia 1009
Hoffman, Stephen L. 1, 176
Hohman, Moses 180
Hohmann, Elizabeth 414
Hol, Wim G. J. 977
Holbrook, Michael R. 831
Holford, Theodore 687
Holland, Martin J. 1225
Holmes, Elaine 352, 363, 885
Holmes, Edward C. 125
Holt, Deborah C. 52, 854
Holtzman, Douglas 356
Homaira, Nusrat 319
Homma, Akira 68
Homsy, Jaco 729, 944, 1050
Hong, Sung-Jong 291, 292
Hong, Young S. 664, 666
Hongsrimuang, Thongchai 635, 637
Hooper, P.J. 528

Hopkins, Donald R. 1117
Hopkins, Heidi 395, 576
Hopkins Sibley, Carol 593
Hopper, Jessica E. 845
Horie, Hitomi 12, 893
Horio, M. 1056
Horna, Gertrudiz 704
Hospenthal, Duane R. 266, 269, 275

Hossain, M. Jahangir 319, 712, 715, 1131, 1222
Hotez, Peter J. 815, 1175
Houde, Nathan 406
Houdek, Jason W. 1083
Hougard, Jean-Marc 233, 765, 1218
Houghton, Jenny 300
Hounton, Sennen 40, 41
House, Brent 3, 25, 458, 647, 1034, 1036
Houzé, Pascal 77
Hovav, Einat 809
Howard, Randall F. 564
Howard, Robin S. 544
Howlett, Lindsey 222
Hoyos, Catalina 309
Hoyos, Oladier 497
Hsiao, Hui-Mien 46
Htun, Khayae 966
Hu, Fu-Chang 482
Hu, Renjie 480
Hu, Susan C. 492
Hu, Yan 1177, 1178
Huaman, Moises A. 316, 709, 1100, 1128
Huang, Chiung-Yu 620
Huang, Claire Y. 489, 493, 507, 511, 892
Huang, Junjun 551, 810
Huang, Jan-Jang S. 496
Huang, Min-Tze 492
Huang, Shuhui 1047
Huang, Tien L. 557
Huang, Yuefang 427, 517
Huang, Yan-Jang S. 492
Hubbard, Alan 364, 818
Hübner, Marc P. 144, 378, 786
Huddleston, Dora B. 810
Hughes, David M. 989
Huhtamo, Eili 317
Hume, Jennifer 748, 941
Hunsperger, Elizabeth 502, 886
Hunter, Meredith 566
Huong, Vu T. Q. 12, 893
Hurwitz, Ivy 1146
Husain, Sohail 814
Husain, Tupur 1046
Hussain, Mobassir 602
Hutagalung, Robert 966
Hutchinson, Robert 793
Hutchison, Coll 820
Huy, Rekol 113, 491
Huyse, Tine 296
Hviid, Lars 627
Hwang, Jimee 35, 212, 216

Hyseni, Chaz 53

I

lams, Keith P. 1161
lamsa-aad, Wilarwan 110
lamsirithaworn, Sopon 385
Ibáñez, Javier 586, 587
Ibañez, R. 1103
Ibarra-Juarez, Luis 501
Ibrahim, B. 1117
Ibrahim, I. N. 708
Ibrahim, Mohamed 660, 1064
Ibrahim, Yehia S. 361
Icochea, Eliana 719
Idigbe, Emmanuel O. 455
Idika, Nneoma 455
Idoko, Olubukola T. O. 264, 883
Idro, Richard 85
Iglesias, Rodrigo 309
Ijaz, M. Khalid 284
Ikeda, Makiko 8
Ilboudo-Sanogo, Edith 1059
Ilett, Kenneth F. 1195
llika, Amobi L. I. 1053
llunga, Medard 424
Imes, Tiffany D. 1130
Imwong, Mallika 633
Indrawan, M. 708
Iriko, Hideyuki 1043
Irving, Helen 1215
Isanaka, Sheila 1223
Isham, Valerie 1155
Ishengoma, Deus 195, 345, 601, 608
Ishikawa, Tomohiro 499, 807
Islam, M. Sirajul 17, 263, 712,
715, 1222
Isoe, Jun 657, 1136
Issa, Nébié 856, 877, 1035
Issiaka, Soulama 856, 877, 1035
Issifou, Saadou 1190
Istvan, Eva S. 1236
Iteman, Isabelle 805
Itoh, Takaaki 1218
Ivens, Alasdair 773
lyiola, Toyin 174
Izci, Yusuf 435

J

Jabes, Daniela 976
Jackson, Bryan T. 1216
Jackson, Felix R. 312
Jacob, Benjamin G. 1081
Jacob, Shevin 73
Jacobs, Robert 162, 537, 538, 1205
Jacobs-Lorena, Marcelo 30, 838
Jacobson, R. R. 61
Jacobus, David P. 973
Jacobus, Laura R. 973
Jadhav, Suresh 264

Jahid, Iqbal 263
Jaidee, Anchalee 200, 1123
Jain, Vidhan 341, 984, 1011
James, Cummings 647
James, Eric R. 1
James, Stephanie 1104
Jamieson, Frances 262
Jamieson, Sarra E. 161
Janda, Kim D. 740
Jang, I. J. 457, 851
Jangyodsuk, Vim 801
Jani, Dewal 811
Janka, Jacqueline 1182
Jaramillo, Luz M. 686
Jaramillo-Gutierrez, Giovanna 1170
Jarilla, Blanca 331
Jarman, Richard G. 125, 385,
389, 801, 891
Jarrett, Clayton O. 782
Jasseh, Momodou 735
Javed, Anam 1135
Jawara, Musa 793, 1168
Jeamwattanalert, Pimmada 267
Jean Baptist, Yaro 856, 877, 1035
Jean-Marc, Hougard 1217
Jeffries, David 793
Jelicks, Linda A. 558
Jennifer, Keiser 236
Jenwithisuk, Rachaneeporn 980
Jerônimo, Selma M. B. 421, 872
Jessup, Kira 86
Jetsumon, Sattabongkot 245
Jha, Bharat 1147
Jia, Na 1167
Jiamton, Sukhum 113, 491
Jiang, Daojun 514
Jiang, Desheng 815
Jiang, George 1018
Jiang, Jianlin 650
Jiang, Suping 1207
Jima, Daddi 35, 216, 1003
Jiménez, Magdalena 586
Jiménez, Mirna 1101
Jiménez-Díaz, Belén 586, 587
Jin, Albert 3
Jin, Chaoyang 1173
Jin, Xia 11, 44, 486, 490
Jin, Xiannu 978, 979, 980
Jip, Nimzing 335, 874, 1157
Jiz, Mario A. 331
Jochim, Ryan C. 848
Johansen, Maria Vang 37, 438
Johansson, Michael A. 112
John, Chandy C. 85, 337, 1007,
1019, 1020, 1184, 1213
John, Davis 641
Johnson, Alison J. 500, 512
Johnson, Barbara W. 834, 904, 905
Johnson, David J. 1024
Johnson, Jane 904
Johnson, Jacob 472, 970, 983
Johnson, Kelsey 1007

A-10

The number(s) following author name refers to the abstract number.

Johnson, Kiersten B. 1048
Johnson, Marla K. 822
Johnson, Patricia J. 285
Johnson, Syd 804
Johnson, Wesley O. 1092
Johnston, Kelly L. 430, 431
Johnston, Stephanie P. 287, 456, 826, 1140
Joloba, Moses 591, 598
Jones, Caroline 572, 998
Jones, Franca R. 109
Jones, Jane 852
Jones, Jeffrey L. 1142
Jones, Kristin 511
Jones, Therese 17
Jones, Timothy F. 478, 551, 810
Jongsakul, Krisada 763, 1120
Jongwutiwes, Somchai 635, 637
Jorakate, Possawat 702
Jordan, Alexandra 852
Jordan, Stephen J. 653, 1045
Jordan, Thomas W. 742
Jornrakate, Possawat 418
Joseph, Chabi 1217
Josepha, Maya 1182
Joshi, Hema 224
Jost, Christiane A. 804
Juerg, Utzinger 89, 89, 236
Juliano, Jonathan J. 539, 611, 613
Juliao, Patricia C. 106
Juma, Elizabeth A. 168, 953
Juma, O. 27
Jumanne, A. 27
Junco Diaz, Raquel 1150
Junpee, Alisa 526
Jusuf, Hadi 896, 897, 1109

K

Kabali, Conrad 138
Kabanywanyi, Abdunoor M.
585, 947, 982
Kabat, Juraj 36
Kabatereine, Narcis 300, 359, 725, 752
Kabeya, Alain M. 542
Kabir, Mamun 289
Kachur, S. Patrick 72, 175, 212, 614, 956
Kaddu-Mukasa, Mark 882
Kaewpan, Anek 418
Kafatos, Fotis 1078
Kafsack, Björn F. C. 1238
Kahama-Maro, Judith 394, 397, 577
Kahigwa, Elizeus 175, 614, 956
Kain, Kevin C. 322, 1184, 1187, 1198, 1200, 1209, 1214
Kaiser, Christoph 130
Kajaste-Rudnitski, Anna 805 Kakabadse, Dimitri 413
Kakuru, Abel 729, 944, 1050
Kal, Alphonsus 1117

Kalakheti, Balakrishna 447
Kalamya, Julius 729, 944, 1050
Kalanidhi, A. P. 493, 892
Kalavsky, Erich 156
Kalayanarooj, Siripen 120, 484
Kaldas, Rania M. Kaldas. 442
Kalil, Jorge 161
Kalilani, Linda 75
Kalyango, Joan 824
Kamal, Hussein 131
Kamalamba, John 823
Kamanga, Aniset 305
Kamate, Beh 24
Kamdem, Colince 1169
Kamgno, Joseph 1156
Kamhawi, Shaden 866, 918, 921
Kaminski, Dorothy 43
Kamiza, Steve 772
Kamugisha, Mathias L. 608
Kamya, Moses R. 84, 93, 177,
729, 730, 816, 818, 822, 824,
944, 1050, 1125
Kande, Victor 424
Kaneko, Akira 29
Kaneko, Osamu 840
Kaneko, Satoshi 699, 1056
Kang, Seokyoung 664, 666
Kang'a, Simon 224
Kannady, Khadija 259
Kanneh, Lansana 1130
Kante, Ousmane 24, 787
Kao, Chuan-Liang 492, 496
Kappe, Stefan H. I. 410, 837
Kapre, Subhash 264
Kaptue, Lazare 962
Karanja, Diana M. S. 297, 299, 302, 330, 332, 333, 358, 362, 788
Karema, Corine K. 791
Kariuki, Curtis H. 308
Kariuki, Simon 72, 214, 594, 1033
Karunajeewa, Harin A. 1195
Karunakara, Unni 424
Karunaweera, Nadira D. 549,
550, 634, 842
Kashinath, Ghosh 555
Kasongo, Webster 323
Kasparian, Serena 424
Kasper, Jacob M. 775
Kasper, Matthew R. 105, 426
Kassuku, Ayub A. 38
Kastens, William 1115, 1158
Katabarwa, Moses 527, 1160
Kataraihya, Johannes B. 195
Kateera, Fredrick K. 824
Kato, Kentaro 412
Kats, Lev M. 812
Katureebe, Agaba 93
Katzenstein, Terese 155
Kaul, Surinder 121
Kauth, Christian W. 1011
Kawamoto, Fumihiko 634
Kawuondo, K. 26
Kayala, Matt 621

Kayatani, Alexander K. K. 327
Kayentao, Kassoum 94, 220,
325, 620, 621, 987
Kazadi-Kyanza, Serge 424
Kazura, James W. 215, 326, 380, 529, 651, 1020, 1112, 1115, 1158
Ke, Hangjun 1030
Keating, Joseph A. 592, 631, 794
Keenan, Alexandra B. 916
Keep, Lisa 711
Keiser, Jennifer 170, 363
Keita, Adama D. 128, 129
Keita, Mahamadou 797
Keita, Somita 866
Kellam, Lynda 764
Keller, Christopher 1230
Kelley, Angela M. 977
Kelly, Ann 793
Kelly, John D. 16
Kelly, Jane X. 760, 975
Kelly, Rosmarie 810
Kenangalem, Enny 796, 935,
1183, 1194
Kendjo, Eric 1190
Kengne, Pierre 1060
Kenney, Joanie 9
Kent, Rebekah J. 261, 671
Kenya-Mugisha, Nathan 73
Kerguelen, Juan D. 943
Kerin, Tara 98
Kern, Marcia 679
Kern, Peter 400, 402
Kern, Steven E. 171
Kern, Winfried V. 402
Kessy, Flora 396, 573
Kester, Kent 646
Khadga, Prem Kumar 66
Khalid, Nabila 1226
Khalil, Insaf F. 345
Khan, Ashraful I. 415
Khan, Humarr 714
Khan, M. S. U. 712, 715, 1131
Khan, Shane 217, 1054
Khan, Sheik Humarr 1130
Khanal, Basudha 445, 447
Khantikul, Nardlada 167
Khatib, Rashid A. 614, 956
Khatun, Selina 1222
Khoo, Cynthia C. H. 1085
Kiasi, Nsa 875
Kiechel, Jean-Rene 859, 873, 1193
Kifude, Carolyne M. 965
Kiggundu, Moses 591, 598
Kigozi, Ruth 816
Kihara, Jimmy 334
Kikuchi, Mihoko 12, 893
Kilian, Albert 1052
Kilima, Peter 1116
Killeen, Gerry 247
Kim, Charlie C. 336
Kim, Jung-Yeon 968
Kim, Kami 928
Kim, Mijung 1138

Kim, Tong-Soo 291, 292
Kim, Tae Im 291, 292
Kima, Peter 354
Kimani, Gachuhi 300, 359
Kimbi, E. 438
Kimbi, Helen K. K. 193
Kimera, S. 438
Kimmel, Rhonda 326, 651
Kimweri, Angela 175
Kines, Kristine J. 739
King, Chwan-Chuen 114, 482,
492, 496
King, Christopher 607
King, Chris 625, 628
King, Charles H. 996, 1132
King, Christopher L. 294, 639,
785, 1115, 1233
King, C. R. 5, 6, 7, 634, 651, 644, 1034, 1037
King, Jonathan D. 335, 874, 1114, 1157
King, Jonas G. 659, 747
Kinney, Richard M. 493, 511, 892
Kioko, John 785
Kipp, Walter 130
Kiptui, Rebecca 212
Kirby, Jordona 551
Kirby, Matthew J. 735
Kirby, Paula L. 764
Kirk, Kiaran 841
Kironde, Fred A. S. 882
Kirsch, Philipp 1097
Kisoka, William J. 525
Kitron, Uriel 58, 894
Kitua, Andrew Y. 601
Kiwuwa, Steven M. 882
Klei, Thomas R. 427, 517
Klein, Sabra L. 313
Kleinschmidt, Immo 34, 475, 790
Kleshchenko, Yulyia Y. 924
Klimov, Alexander I. 719, 802
Klimpel, Gary 452
Kline, Daniel L. 847, 1087
Klion, Amy D. 128, 129, 787, 789, 1232
Klotz, Stephen A. 60
Klungthong, Chonticha 125
Knapp, Elisabeth 356
Knols, Bart G. 247
Knox, Tessa B. 1091
Knue, Gregory 251
Ko, Albert I. 68
Kobashigawa, Andres 468
Kobayashi, Kyousuke 412
Kobayashi, Tamaki 208
Kobylinski, Kevin C. 769, 1065
Kochel, Tadeusz J. 269, 272, 312, 316, 487, 709, 719, 890, 1091, 1099, 1100, 1101, 1128, 1129
Koech, Davy 785, 1233
Kohl, Vohith 997
Koirala, Janak 66
Koita, Ousmane A. 1004, 1027, 1182
Kok, Gerdalize 373

Kokoza, Vladimir 1199
Kokwaro, Gilbert 172
Kolaczinski, Jan 377
Kolappan, C 381
Koles, Nancy 544
Kolevic, Lenka A. 825
Kolody, Brianna 657
Komar, Nicholas 261, 808
Komba, E. 438
Kombila, Maryvonne 1190
Komblo, Ibrahim 528
Kome, Nelson E. S. 142
Konaté, Amadou T. 1017, 1031, 1041
Konate, Siaka 128, 129, 787, 789, 1232
Kone, Abdoulaye K. 25, 1036
Kone, Mamady 1005
Kone, Nouhoum 797
Kone, Younoussou 220, 325, 620, 622, 987
Kongjaroon, Suchada 418
Kongoro, Jedidah 937
Kongsin, Sukhontha 113, 491
Konishi, Tamiko 353
Konovalova, Svetlana 5, 6
Konradsen, Flemming 226
Koram, Kwadwo 223
Koram, Kojo 876
Korir, Jackson C. 338
Koroma, Joseph B. 135
Kortepeter, Mark 646
Koru, Ozgur 541, 543, 826
Kosasih, Herman 13, 896, 897, 1109
Koscalova, Alena 966
Kosoy, Michael Y. 265, 416
Kosoy, Olga 500, 512, 904
Kossou, Hortense 1191
Koster, Frederick 1107
Kotaki, Akira 8
Kotecka, Barbara M. 450
Kotloff, Karen 369, 797
Kotova, Svetlana 3
Kou, Zhihua 11, 44
Kouriba, Bourema 25, 1036
Kozar, Michael P. 589, 978, 979, 980
Kozikowski, Alan 970
Kraemer, Susan M. 940
Kramer, Laura D. 806, 1086
Kramer, Martin L. 523, 582, 588
Kramer, Wayne 509
Krasavin, Nina M. 665
Krastins, Brian 414
Krause, Michael A. 220
Krcmery, Vladimir 156
Krebs, John 268
Kremsner, Peter G. 191, 199, 1190
Kristanto, I. 708
Krogstad, Donald J. 580, 592, 631, 761, 1004, 1027, 1182
Krogstad, Frances M. 580
Krudsood, Srivicha 873, 1184

Krueger, Laura 480
Krzych, Urszula 646, 647
Kuan, Guillermina 47, 126, 388, 705
Kubaje, Adazu 299
Kuboja, S. 27
Kucerova, Zuzana 917
Kudzala, Amose C. 16
Kuikumbi, Florent M. 542
Kuile, Feiko T. 1013
Kuklinski, Jaime 738
Kulesh, David A. 314
Kulkarni, Prasad 264, 883
Kumar, Abhay 19
Kumar, Arvind 540
Kumar, Nirbhay 208, 342, 762, 940
Kumar, Pavan 381
Kumar, Sanjai 811
Kumar, Sanjeev 1070
Kumaraswami, V 381
Kumbak, D. 1117
Kun, Juergen J. F. 191
Kunz, Susan 657
Kurane, Ichiro 8
Kurkela, Satu 317
Kurtis, Jonathan D. 331
Kurtz, Jonathan R. 60
Kuser, Paula Regina 225
Kusuma, Andreas 935
Kuzera, Kristopher 49
Kuzmin, Ivan V. 265
Kweka, Eliningaya J. 246
Kwiatkowski, Dominic 773
Ky, Clotilde 605, 606, 619
Kyabayinze, Daniel J. 177, 884
Kyelem, Dominique 528, 1112, 1154
Kyle, Dennis E. 192, 450, 540,
547, 600, 973, 1121, 1122
Kyle, Jennifer L. 45

L

La Corte dos Santos, Roseli 951
Laakkonen, Juha 317
LaBeaud, A. Desiree 785, 1132
Lacerda, Hênio G. 421
Lackner, Peter 1190
Lacma, Julio 1088
Ladipo, Olaniran 152
Ladislau, José L. B. 951
Lafferty, Erin I. 1184
LaFlamme, Anne Camille 742
LaForce, Marc 264, 883
LaFuente, Carlos 1201
Lagneau, Christophe 1221
Laguna, Alberto 312, 709, 798, 1099, 1101
Laha, Thewarach 290
Lahiri, Pulak 553
Lamb, Erika 303
Lambert, Lynn 4, 22, 645
Lamberton, Poppy H. L. 752

Lambrechts, Louis 682
Lameyre, Valérie 77
Lammey, Jovitha 1195
Lammie, Patrick J. 141, 432, 1112, 1114, 1154
Lampah, Daniel 796, 935, 1183, 1194
Lampman, Richard L. 505
Lan, Nguyen T. P. 12, 893
Lanar, David E. 25, 646, 1036
Lanata, Claudio F. 366, 367
Lanciotti, Robert S. 512, 904
Landa, Veronica 320
Lander, Eric S. 406, 1211
Landis, Sarah 1000
Laney, Sandra J. 141, 1115, 1154
Lanfrancotti, Alessandra 737
Lang, Jean 386
Lang, T. 26
Langenbach, Kurt J. 479
Lanier, Lewis L. 336
Lanteri, Charlotte 979
Lanzaro, Gregory C. 50, 241
Laowatanathaworn, Paiwan 418
Lapied, Bruno 233
Laquer, Kari M. 643
Lara, Ana M. 288
Larocque, Regina C. 414, 415
Larsen, David 794
Larsen, Thomas 314
Larson, David 144, 786
Lascano, Mauricio 417, 695
Laserson, Kayla 100, 101. 102,
299, 368, 369, 370, 372, 615
Laufer, Miriam K. 728, 989
Laurens, Matthew B. 25, 728,
1036
Laurent, Thierry 1202
Laven, Janeen 904
Laven, Janeen J. 512
Laverty, Caroline 1204
Law, Irwin 1195
Lawniczak, Mara 1078
Lawrence, Emma 1229
Lawrence, Jody 575
Lawrence, Joanne 852
Lawson, Bernard W. 253
Lazarus, Wilfred 138
Lazo, John S. 472
Le, Hung X. 1051
Le, Thuan K. 1051
Le Doux, Diffo J. 531
Le Mire, Jacques 1219
Leach, A. 26, 27, 1036
Leake, John 196
Leary, Kevin J. 182
LeBlanc, Ralph E. 208, 940
Lebowitz, Jack 3
LeBreton, Matthew 531
Lebrun, Lauren M. 414
Leclipteux, Thierry 1202
Ledezma, Eliades 552
Lee, Nelson 959
Lee, Rogan 86
Lee, Yoosook 50

Lee, Yeuk-Mui 440, 532, 864
Lefèvre, Gilbert 171, 568, 569
Lehmann, Tovi 748
Lehners, Nicola 199
Leifsson, Pall S. 37
Leimgruber, Stephanie 472
Leistner, Christine 695
Leite, Liliane 423
Lejano, Jennylynn N. 1037
Lek, Dysoley 295
Leke, Rose G. F. 327, 1015
Lekule, Faustin 438
Lell, Bertrand 199
Lemma, Hailemariam 173
Lemnge, Martha M. 23, 26, 96,
$155,195,328,345,601,608$,
641, 1012
Leng, Lin 1231
Lengeler, Christian 394, 396,
397, 573, 577, 585, 947
Lenhart, Audrey 1220
Lennon, Niall 47
Lennon, Niall J. 123
Leon, Leonor L. 561, 920, 919
Leon-Cabrera, Sonia 437
Lerch, Melissa 1235
Lerdthusnee, Kriangkrai 416
Lertora, Juan J. L. 761
Lescano, Andrés G. 109, 309,
320, 1088
Leslie, Toby 54, 377
Lessa, Marcus 161
Lessler, Justin 385
Letson, Bill 899
Leturia, Carlos 709
Levashina, Elena 1069
Levine, Myron M. 369, 797
Levine, Richard A. 49
Levio, Mantos 110
Levy, Joshua 1130
Levy, Karen 364
Levy, Michael Z. 767
Lewis, Drew 374
Lewis, Sheri 710
Li, Ang 1186, 1210
Li, Ben-Wen 427, 520
Li, Hua 558
Li, Hongyi 1098
Li, Julin 245
Li, Jia 352, 363
Li, MingLin 1
Li, Qigui 178, 182, 183, 184, 185, 186, 589, 970, 1207
Li, Sheng 6
Li, Shunyu 291, 292
Li, Tao 1
Li, Xiaoming 322
Li, Yuesheng 357
Lia, José 240
Liang, Alison 106
Liang, Jennifer L. 1114
Liang, Li-Ching 913
Liang, YanMei 1151
Liauw, Felix 1113

A-12

The number(s) following author name refers to the abstract number.

Libraty, Daniel H. 120, 389, 484, 891
Liebman, Katherine 975
Lievens, M. 26, 27, 28
Liles, W. Conrad 322, 1184,
1187, 1198, 1214,
Lillie, James 582
Lim, Chae-Seung 968
Lim, Chwee Teck 1186, 1210
Lim, Jung-Dae 942
Lim, Parath 599
Lim, Tong Seng 1186
Lim, Yvonne A. L. 276
Lima, Aldo A. M. 107
Lima, Iraci D. 421
Lima, Maria F. 924
Lima-Junior, Josué C. 999
Limbach, Keith 5, 6, 7, 644, 1034, 1037
Limban, Carmen 1145
Limpitikul, Kriengsak 635
Lin, Ai J. 589
Lin, Min-Hau 492
Lin, Ming 809
Lindblade, Kimberly 98, 214, 463, 777, 1007, 1033
Lindegardh, Niklas 575, 730
Lindsay, Steven W. 259, 688, 735, 793
Lindstrom, Stephen 719
Linehan, Mary 464, 528
Lines, Jo 997
Linser, Paul J. 661, 1139, 1171
Linthicum, Kenneth J. 1058
Lira-Zumbardo, Victor 732
Lisakulruk, Sunisa 114
Liskova, Anna 156
Listyaningsih, Erlin 105, 716
Littrell, Megan 794
Liu, Chung-Ming 482
Liu, Hanlan 190, 582
Liu, Huayin 580
Liu, Hwei-Chung 913
Liu, Jun 322
Liu, Mingshun 14
Liu, Qingzhen 1133
Liu, Rui Q. 403
Liu, Shifan 294
Liu, Tsan-Hsiun 913
Liu, Yaobao 245
Livengood, Jill A. 493, 892
Liyanage, Tilaka 433
Llanos, Joseph K. 700
Llanos-Cuentas, Alejandro 858, 1202
Loaiza, Jose R. 680
Lobo, Neil F. 679
Locke, Emily 5, 6
Loftin, Karin 717
Logue, Christopher H. 311
Loke, P'ng 159
Lokomba, Victor 1000
Lolis, Elias 1231
Lomo, Dr. Peter 81
Londono, Berlin L. 592, 631

Londono-Navas, Angela 1161
Long, Carole A. 4, 5, 6, 22, 620,
642, 645, 652, 1034, 1039
Long, Earl 456
Long, Kanya C. 316
Long, Maureen 506
Looareesuwan, Sornchai 633, 873
Lopansri, Bert 1194
Lopez, Beatriz 98
Lopez, Carmen 1128
Lopez, Gerard 463
Lopez, Martha 109
Lopez Sifuentes, Victor 766
Lopez-Martinez, Giancarlo 750
Lord, Cynthia C. 749
Loroño-Pino, Maria A. 732, 809
Lothrop, Branka B. 1058
Loughlin, Anita M. 868
Louis, Penali K. 595
Loukas, Alex 290
Lourido, Sebastian 1239
Lovato, Raquel 140
Lovegrove, Fiona E. 1184
Loyevsky, Mark 1
Lozano, Leyder Elena 454, 744
Lozano, Sonia 971
Lozano-Fuentes, Saul 732, 771, 1066, 1067
Lu, Da-bing 329
Lu, Feng 245, 968
Lu, Ziyue 1198
Lubaki, Jean-Pierre F. 542
Lubega, George 356
Luby, Stephen P. 17, 20, 263, 319, 712, 715, 1131, 1222
Lucas, Carmen M. 197, 563, 632, 1014
Lucas, John R. 1218
Lucchi, Naomi W. 341, 392, 1013
Lucena, Marize C. 951
Luchavez, Jennifer 966
Luckhart, Shirley 686, 698, 1077
Lugemwa, Myers 816, 1125
Lugo de Yarbuh, Ana 165, 166, 533
Lukas, Susan 1122
Luke, Lisol N. 703
Lukens, Amanda K. 1211
Lum, Emmaculate 193
Lum, Lucy C. 113, 491
Luna, Giuseppe 1204
Lungi, Victor 1130
Luong Chan, Quang 391
Lushino, P 993
Lusingu, John P. 23, 26, 328, 345, 601, 641, 1012
Luxemburger, Christine 391
Luy, Betty E. 493, 507, 511, 892
Lwin, Myo M. 966
Lyashchenko, Konstantin P. 68
Lydy, Shari L. 417
Lyimo, Issa 247
Lyimo, John 568, 571
Lyke, Kirsten E. 25, 1036

Lynch, Caroline 348
Lynch, Julia A. 700
Lynch, Michelle M. 1042
Lyons, Jeffrey 647

M

M, Oduola A. 949
Ma, Wu 939
Mabey, David C. 1225
Mabuza, Aaron 373
Macaluso, Kevin R. 783
Macareo, Louis 178
MacDonald, Nick 3
Macedo de Oliveira, Alexandre 71
Machado, Paulo L. 355, 1203
Machado, Paula R. 116
Machado-Silva, Jose R. 436
Macharia, Stephen 542
Machel, F. 27
Machevo, Sonia 571
Machorro, Garcia 888
Maciel, Bruna L. L. 421
Macintyre, Kate 794
Mack, Brian 592
Mackenstedt, Ute 404
Mackenzie, Charles 138, 139,
140, 384, 525, 875, 1116,
1160
Mackenzie, Charles D.
MacLean, J. Dick 1227
MacLennan, Calman A. 340
Madarieta, Susana 115
Madebe, Rashid 608
Madison, Marisa N. 924
Madrid, Cesar 1099
Madureira, Ana Paula 225
Mady, Ndiaye 832, 912
Maes, Gregory E. 296
Maes, Louis 1205
Maestre, Amanda 593
Magak, Gideon N. 1019
Magalhães, Andrea 161
Magalhães, Izanelda 951
Magalhaes, Tereza 654, 770
Magill, Alan 188, 189, 472, 581, 589, 1207
Magistrado, Pamela A. 601, 641
Magnussen, Pascal 438, 820
Mahamadou, Ibrah 1004
Mahande, Aneth M. 246
Mahande, Johnson M. 246
Mahanty, Siddhartha 22, 36,
420, 787, 789, 1232
Mahapatra, Lily 379
Maharaj, Raj 475
Mahdy, Mohammed 276, 1179
Maher, Steven P. 776, 931
Mahesh, Nira 772
Maia, Dílson C. 919
Maiga, Deo 195
Maiga, Hamma 571, 727, 950, 987

Maiolatesi, Santina 7
Maire, Nicolas 219
Maiteki-Sebuguzi, Catherine 818
Majambere, Silas 259, 688, 793
Major, Joshua W. 583
Majori, Giancarlo 206
Makame, Hamad 571
Makemba, Ahmed 573
Makene, Christina L. 139, 525
Makin, Jenny 827
Makprasert, Sirirat 702
Malafaia, Emilia C. O. B. 902, 903
Malaga, Fernando 767
Malaquias, Luiz Cosme C. 303
Maldarelli, Grace 382
Maldonado, Fernando 109
Malecela, Ezekiel K. 195, 608
Malecela, Mwele 138, 139, 525, 875, 1116
Malhotra, Indu 625, 651, 785, 1233
Malila, Aggrey 585
Malimi, Masunga C. 1012
Malkin, Elissa 22, 646, 969, 1039
Mallory, Rayburn 62
Maloney, Jenny G. 551
Maloney, Susan A. 416, 418
Mamani, Enrique 118, 485, 906, 914
Mammen, Ansu 1151
Mammen Jr, Mammen P. 891
Manalastas, Emily 1178
Manamperi, Aresha 1032
Mancini, Emiliano 1069, 1168
Mancuso, Jamie 711
Mand, Sabine 383
Mandala, Wilson L. 340
Mandava, Nageswara 707
Mandel, Eric 268
Mandike, Renata 195
Manfred, Weidmann 912
Mangeni, Fred W. 177, 1125
Manivannan (Uradey), Bhagyashree 742
Mann, Victoria H. 739
Manni, Tytti 317
Manning-Cela, Rebeca G. 562
Manohar, Nalini 1034, 1037
Manque, Patricio A. 288
Mansor, Sharif 1193
Mantilla, William 1128
Manyando, Christine 570
Maraga, Seri 819
Marano, Nina 461
Maraschiello, Ciriaco 590
Marcel, Tanner 89, 236
Marchant, Tanya J. 998
Marchena, Loyd 1107
Marchesini Barbosa, Paola 951
Marchetti, Elisa 264, 883
Marcombe, Sebastien 232, 1221
Margolius, David 331
Mariani, Giuseppe 405, 443

Marin, Dairo 687, 744
Mariñas, Jamileth 1107
Marinho, Claudio R. F. 629
Marini, Francesca 693
Marjason, Joanne 1039
Marlenee, Nicole 511
Maroli, Michele 693
Marovich, Mary A. 10
Marques, Isabel 227, 229
Marquet, Pablo A. 713
Márquez-Dueñas, Claudia 562
Marquino, Wilmer 1026
Marrast, Anne-Claire 171
Marrs, Carl F. 413
Marsh, Kevin 26, 617, 817
Marshall, Jonathon C. 683
Marshall, Stephanie A. 1037
Martellet, Lionel 264
Martelli, Celina T. 113, 491
Martin, Gregory J. 269
Martin, Laura B. 4, 622, 623, 642, 645, 652, 1039
Martin, Sam 799
Martin, Shannon S. 720
Martínez, Idalí 886
Martinez, Luis J. 700
Martínez, María 590
Martinez-Calvillo, Santiago 164, 556, 562
Martinez-Flisser, Gina 39
Martinez-Gutierrez, Marlen 497, 498
Martinez-Medina, Dalila 858
Martins-Filho, Olindo A. 902, 903
Martinson, Jeremy 640, 1022, 1230
Maruli, A. 708
Marx, Preston 566
Mary Lynn, Baniecki 579
Masokoto, A. 993
Mason, Carl J. 267, 270, 801
Mason, Peter W. 55, 111, 499, 807
Massougbodji, Achille 210, 567, 1191
Masuku, Humphreys 16
Masur, Henry 1182
Mateus, Cristian E. 943
Mather, Michael W. 1030
Mathew, Anuja 889
Mathingau, Alice 100, 101, 102, 368, 370
Mathison, Blaine A. 456
Matos, Eduardo 914
Matthias, Frank 199
Matuja, W. 438
Matute, Juan Carlos 126
Mave, Vidya 761
Maves, Ryan C. 269, 487
Mawlouth, Diallo 832
Max, Grogl 1207
May, Balam 887
May, William 1066
Mayan, Ismail 377

Mayanja-Kizza, Harriet 73
Mayence, Annie 557
Mayengue, Pembe 199
Mayer, Gunter 515
Mayhew, George F. 428, 519
Mayor, Yovanna E. 825
Mayta, Egma 906
Mayumana, Iddy 396, 573
Mayxay, Mayfong 633, 1123
Mazitschek, Ralph 190, 578
Mazumder, Lakshman 557
Mazure, Hubert 76, 92
Mazzudulli, Gina M. 923
Mbanya, Dora 962
Mbaye, Aïcha 967
Mbidde, Edward 419
Mbogo, Charles M. 672
Mboup, Soulyemane 349, 406,
1211, 1212
Mbuyita, Selemani 175, 982
Mc Millan, David 581
McAbee, Rory D. 50
McArdle, James L. 716
McAuliffe, Isabel T. 440, 532
Mcbride, Alan 68
McCaffrey, Anton 350
McCall, Philip J. 778, 1220
McCalmont, William 979
McCarthy, James 703, 854, 959
McCarthy, James S. 52
McClellan, Holly 1047
McClintock, Shannon K. 1114
McCollum, Andrea M. 197, 198,
343, 408, 984
McDermott, Colleen 519
McElroy, Kate L. 123, 502
McFarland, Deborah 335, 874
McGarvey, Stephen T. 329, 1181
McGee, Bryan 730
McGee, Charles E. 513, 1111
McGill, Alan J. 973
McGowan, Stephen E. 421
McGrath, Shannon 646, 1034, 1037
McGugan, Glen 157
McHenry, Amy M. 411, 639
McKenzie, F. Ellis 617, 767, 817
McKerrow, James 159, 162, 1205
McKinney, Michelle D. 314
McManus, Donald P. 357, 399, 403
McMorrow, Meredith L. 72, 614, 956, 987
McNamara, David T. 607
McNulty, Samantha N. 429
McQuiston, Jennifer 268
McVey, Duncan 6, 644
Mduluza, Takafira 342
Mead, Daniel G. 478, 810
Mead, Paul S. 419
Means, John 1134
Mease, Ryan M. 643
Meckel, Jason 769, 1065
Medeiros, Daniele B. A. 723
Medeiros, Marco A. 68

Medica, Darcy L. 508
Medina, Anicia M. 825
Mediratta, Rishi P. 97
Medlock, Jan 697
Meek, Sylvia 997
Megnekou, Rosette 627
Mehlhop, Erin 804
Mehus, Joseph O. 696
Meira, Glenda C. 902
Mejia, Lidia 704
Mejia-Zuluaga, Lida 878
Melendez, Victor 182, 185, 555,
760, 970, 978, 979, 980
Melgar, Sergio 59
Melman, Arnold 565
Melo, Paulo R. S. 673, 751
Melrose, Wayne 92, 132
Membi, C. 27
Menan, Kouame G. 595
Mende, Katrin 266, 275
Mendelsohn, Laurel 1182
Mendez, Antonio 552
Mendez, Fabian 469
Mendez, Juan 555, 925, 1207
Mendez, Yolanda 465
Mendlovic, Fela 437
Mendoza-Silveiras, Jose 7, 1034
Menegon, Michela 206
Meneses, Claudio R. 50
Menezes, Collin N. 400
Menezes, Eliane P. 161
Menezes, Gisele B. L. 901, 902, 903
Menge, David M. 1213
Menocal Heredia, Lenina 1150
Menon, Manoj 16, 99
Menten, Joris 567, 823, 1150
Meola, Mark A. 806
Mercado, Edel 389
Mercado, Erik H. 103
Mercado, Xiomara 886
Mercer, Luke 538, 1205
Mercier, Thomas 170
Meredith, Stefanie 130
Meremikwu, Martin M. 618
Merino, Nancy 914
Merrill, Denise 479
Mertens, Eva 805
Mertz, Gregory J. 713, 1103, 1127
Mesa, Ana María 981
Meshnick, Steven R. 75, 539, 611, 613, 1000, 1119
Messele, Ayenew 1003
Messina, Jane 1098
Mestres-Simon, Montserrat 737
Mesu, Victor K. 542
Metenou, Simon 787, 789, 1015, 1232
Meteyer, Carol 1161
Metta, Emmy 175
Meya, David 73
Meyer, Esmeralda V. S. 999
Meylan, Francoise 379
Meza, Rina 109

Meza, Yocelinda 109
Meza Gómez-Palacio, Isaura 895
Mharakurwa, Sungano 305, 393, 986, 988
Michael, Edwin 137, 139, 525
Michael, Obaro S. 79, 398
Michael, Scott F. 907
Michaels, Sarah R. 255, 509, 510, 1083
Michalski, Michelle 519, 521, 522
Michelet, Lorraine 42
Michon, Pascal 633
Midega, Janet T. 672
Midzi, Nicholas 342
Miesfeld, Roger L. 656, 657, 658, 1136
Mihigo, Jules 71
Milazzo, Mary Louise 1126
Miles, Aaron P. 22
Miles, Michael A. 51
Milhous, Wilbur K. 176, 192, 973
Miliani, Efrain 465
Militello, Kevin T. 775
Milkreit, Maike 483
Miller, Ann K. 179
Miller, Becky 1123
Miller, David A. 858
Miller, John 35, 216
Miller, Lori 647
Miller, Louis H. 3, 4, 22, 24, 220,
620, 621, 622, 623, 642, 645,
652, 1005, 1038, 1039, 1047
Miller, R. S. 182, 763
Miller, Scott 178
Milligan, Paul 726, 735
Millogo, Athanase 40, 41
Milner, Erin 979
Milner, Jr., Danny A. 406, 772, 1211
Minakawa, Noboru 699
Minakawa, N. 1056
Minh Dung, Nguyen 1224
Minja, Daniel T. 23, 1012
Minnick, Sharon 890
Mintwo, Alaine F. 542
Mintz, Eric 98, 369
Miranda, Aracelis 1028
Miranda, María Consuelo 454
Miranda-Choque, Edwin 879
Miranda-Verástegui, César 858, 1202
Miraval, Maria 914
Mircetic, Marko 325, 622, 623
Miri, Emmanuel 335, 1117, 1157
Mis-Avila, Pedro 1066
Misago, Seth 23, 608
Mishra, Arunima 938
Mishra, Prasun 80
Mispireta, Monica 367
Misty, Carlson 1207
Mitre, Edward 144, 378, 786
Mitreva, Makedonka 429, 520
Miura, Kazutoyo 4, 22, 24, 620, 642, 645, 652, 1039

A-14

The number(s) following author name refers to the abstract number.

Mixson-Hayden, Tonya 392, 984
Mkandawire, Rhoda 570
Mkulama, Mtawa A. P. 393
Mladonicky, Janice 432, 1114
Mlambo, Godfree 342, 940
Mlangwa, J. E. D. 38, 438
Mlozi, M. R. S. 38, 438
Mmbando, Bruno P. 155, 328,
345, 601, 608
Moafo, Jonas 384
Moch, J. Kathleen 839
Moerman, Filip 829
Mogollón, Nora 165, 166
Moguel, Barbara 59
Mohammed, Hamish 488
Mohammed, Nasir 377
Mohandas, Narla 812
Moharana, Surya Kant 18
Moji, Kazuhiko 525
Molaei, Goudarz 697
Molgo, Jordi 233
Molina, Sandra 1225
Molina-Cruz, Alvaro 691, 1070, 1170
Moloney, James P. 1055
Molyneaux, John W. 17, 263
Molyneux, Malcolm E. 340, 772
Mombo Ngoma, Ghyslain 199
Moncayo, Abelardo C. 478, 551, 810
Mondal, Dinesh 277
Mondal, Utpal K. 712, 1222
Monintja, Juan 935
Monroy, Carlota 59
Montano, Silvia M. 1099, 1102, 1129
Monteiro, Glória R. 421
Monteiro, Hamilton A. O. 721
Monteville, Marshall 1166
Montgomery, Jacqui 772
Montgomery, Joel M. 272, 309, 312, 316, 320, 709, 719
Montgomery, Philip 406, 1211
Montgomery, Susan P. 297, 299, 332, 333
Montip, Gettayacamin 589
Montoya, Jose G. 1142
Montoya, Romeo 113, 491
Moon, Steven J. 314
Moore, Christopher 73
Moore, Chester G. 771, 833
Moore, Julie M. 1187, 1188
Moore, Sarah J. 247
Moormann, Ann 326, 651
Moormann, Ann M. 1020
Mor, Siobhan M. 1141
Morales, Maria Eugenia 261
Morales, Maria 301, 739
Morales, Rossana 555
Morales-Betoulle, Maria Eugenia 808
Moran, Diego 374
Moran, Thomas M. 43
Morazzani, Elaine M. 1162, 1163
Morenikeji, Olajumoke A. 624

Moreno, Alberto 650, 999
Moreno, Elio A. 165, 166, 533
Moreno, Elizabeth C. 303
Mores, Christopher N. 1090
Moretz, Samuel E. 5, 652
Morgan, John 1215
Morgan, Marjorie 854
Morgan, Oliver 800
Morgan, Timothy W. 783
Morita, Kouichi 12, 893
Morlais, Isabelle 1079
Morris, Natashia 475, 771
Morris, Shaun K. 262
Morrisey, Joanne M. 1030
Morrison, Amy C. 272, 316, 890, 894, 1089, 1091
Morrison, Dennis N. 386
Morrone, Aldo 173
Moses, Lina M. 1130
Mosha, Frank W. 96
Mosha, Jacklin F. 96
Mosher, Aryc W. 35, 216, 527, 1003
Moss, Kelley J. 493, 892
Moudy, Robin M. 806
Mouline, Karine 1075
Mounsey, Kate E. 52
Moura, Iaci 1143
Moya, Roni 227
Moyou Somo, Roger 531
Mpanga Sebuyira, Lydia 395
Mpimbaza, Arthur 93, 1189
Mponda, Hadji 998
Mpoto, Alfred M. 542
Msangeni, Hamis H. 608
Msham, Salum 23
Msham, S. 26
Mshana, Christopher 573
Mshinda, H. 27
Mshinda, Hassan 247, 396, 573
Mtasiwa, Deo 394, 397, 577
Mtullu, Samuel 155
Muchiri, Eric 299, 300, 359, 785, 996, 1233
Mueke, Jones M. 689, 690
Mueller, Ellen C. 145
Mueller, Ivo 703, 819, 1195
Mueller, Natascha 977
Muerhoff, Scott 961, 962, 963
Muh, Bernice F. 193
Muhire Manzi, Remy Serge 870
Mukama, Bateganya F. H. 83
Mukherjee, Shankar 558
Mukherjee, Sudeshna 810
Mukhri, Haditya L. 1109
Mukwamataba, Doreen 823, 829
Mulenga, Modest 323, 823, 829
Mulet, Teresa 586, 587
Mullen, Gregory E. 623, 642, 652, 1039
Müller, Joachim 286, 1145
Mulumba, Madishala P. 243
Mulure, Nathan 172, 173, 571, 585, 947

Muluvi, Geoffrey M. 1033
Munasinghe, Anusha 634
Mundaca, Cecilia C. 709
Mungai, Peter 625, 651, 785, 996, 1233
Munguti, Kaendi 174
Muniz, Andre Luiz 784
Muñoz, Carlos 1107
Muñoz, Fredy 463
Muñoz-Jordán, Jorge 43, 123, 502
Munstermann, Leonard 469, 687, 744
Munungi, Auguy K. 542
Munungu, Blaise F. 542
Muok, Erick M. O. 297, 299, 332, 788
Muratova, Olga 22, 1043
Murray, Clinton K. 266, 269, 275
Murray, Meredith R. 495
Murray, Sara A. 4
Musapa, Mulenga 252
Muskavitch, Marc 1078
Musoke, Charles 1189
Mutabingwa, Theonest K. 743, 1124
Mutale, Felix 823
Mutalemwa, Prince 525
Mutambu, Susan L. 342
Mutangala, Willy 424
Mutantu, Pierre N. 542
Muth, Sinuon 599
Mutombo, Wilfried 424
Mutuku, Francis 689, 690
Mutunga, James M. 1216
Muturi, Ephantus J. 248
Muvdi, Sandra 545
Mwai, Leah 991
Mwakalinga, Steve 993
Mwakalinga, Steven B. 641
Mwakilembe, P. 438
Mwakingwe, Agnes 928
Mwakitalu, Mbutolwe E. 138, 139, 875
Mwangi, Jonathan 407
Mwangi, Rose W. 70
Mwangi, Tabitha 817
Mwanje, Mariam 299
Mwapasa, Victor 75
Mwatha, Joseph K. 300
Mwebaza, Norah 84, 576
Mwesigwa, Julia 730
Mwingira, Upendo J. 139, 525
Mwinzi, Pauline N. 297, 299,
302, 330, 332, 333, 358, 362, 788
Mwita, Alex 195
Myer, James 189
Myers, Timothy G. 143, 1153
Myint, Hla Y. 188
Myles, Kevin M. 321, 1162, 1163
Myllynen, Johanna 317
Myombo, Mtango 525
Myrick, Alissa 336
Mzayek, Fawaz 761, 1182

Mzilahowa, Themba 1094
N
Na-Bangchang, Kesara 593
Nabakooza, Jane 395
Nagarkatti, Rana 811
Nagpal, Avinash C. 984
Nagy, Tamas 1188
Naha Biswas, Sejuti 553
Nahar, Nazmun 712, 715, 1131, 1222
Nahlen, Bernard L. 214, 1033
Nahum, Alain 567, 571
Naik, Kinnery 100, 101, 102, 368, 370
Nair, Shalini 200, 1123
Najera-Vazquez, Rosario 732
Nakavet, Agat 1119
Nakayaga, Joan 730
Nakiboneka-Ssenabulya,
Deborah 1189
Namayanja, Monica 356
Nambozi, Michael 829
Namountougou, Moussa 1060
Namwanje, Harriet 464
Nana-Djeunga, Hugues 1156
Nanayakkara, Dhammika 857
Nandy, Anindita 87, 88
Nankabirwa, Joaniter I. 725
Nantezza, Ann 356
Naorat, Sathapana 418, 702
Napuli, Alberto J. 977
Naquira, Cesar 1201
Naranjo, Nelson 1077
Nare, Bakela 162, 537, 538, 1205
Narro-Robles, Jose 39
Narum, David L. 3, 22, 839, 1038
Nascimento, Eliana T. 421
Nascimento, Marcia 355
Nascimento, Rute 227
Nash, Oyekanmi 398
Nash, Theodore E. 36, 420
Nataro, James P. 104
Nathan, Rose 396, 998
Nau, Martin 1122
Naumova, Elena N. 1141
Navaratnam, Viswerwaran 873, 1193
Navarro, E 1103, 1127
Navas, Adriana 915
Nawaz, Fatima 598
Nayiga, Susan 576
Ndanu, Ann M. 1033
Ndao, Momar 483, 1227
Ndassa, Arouna 531
Nde, Pius N. 924
Ndege, Henry 1022, 1230
Ndenga, Bryson 259
Ndiaye, Daouda 349, 406, 967,
1211, 1212
Ndiaye, Jean L. A. 967
Ndiaye, Mady 1106
Ndir, Omar 349, 1211, 1212

Ndirango, James 803
Ndjamen, Blaise 354
Ndjemai, Hamadou N. M. 237
Ndububa, Dennis A. 584
Ndubuisi, Mackevin 279
Ndumbe, Peter M. 204
Ndyomugyenyi, Richard 820
Neafsey, Daniel E. 406, 1078, 1211
Neal, Aaron 1045
Nébié, Issa 1017, 1031, 1041
Neira Oviedo, Marco V. 661, 1139
Nelson, Kara 364
Nelson, Randin C. 504
Nelson, Steevenson 804
Nemeth, Nicole 500
Nemmers, Suzie T. 69
Neres, Rita 227, 629
Nery, Susana 1052
Nett, Randall 1140
Neves, Luis 438
Newman, Patrick C. 318
Newman, Robert 71, 72, 987
Newman, Stanton 1192
Newsome, Anthony 551
Newton, Charles R. 1190
Newton, Je T'Aime 717
Newton, Paul 1123
Neyra, Joan M. 709
Neyra, Victor 649
Ng'ang'a, Zopporah W. 788
Ng'habi, Kija R. 247
Ngalle, Elive 384
Ngamije, Daniel 791
Ngo, Thang D. 1051
Ngondi, Jeremiah 35, 1003
Ngouama, Daniel 424
Ngouamegne, Erasmienne T. 187
Ngouela, Silvere 187
Ngoundou-Landji, Josiane 624
Ngowi, Helena A. 38, 438
Ngu, Vu T. T. 12, 893
Nguyen, Cokey 578
Nguyen, Trong Toan 391
Nguyen, Tien 537
Nguyen, Vu 3, 1038
Nguyen Thi, Kim Tien 391
Ngwa, Alfred A. 930, 933
Niambele, Mohamed B. 24
Nian, Hong 298
Niangaly, Amadou 25, 1036
Nielsen, Morten A. 641
Nielsen, Robin 646
Nieto, Monica 1129
Nieves, Elsa 240
Niezgoda, Michael 265
Nikolajczyk, Barbara 1151
Nimmannitya, Suchitra 484
Nimmo, Derric 1068
Nin, Daniel A. 583
Nisalak, Ananda 120, 147, 484, 891
Nitiema, Pascal 40, 41

Njama-Meya, Denise 818
Njenga, Sammy M. 1112
Njepuome, Ngozi A. 1117, 1157
Njiokou, Flobert 531, 1156
Njuguna, P. 26
Njunge, James M. 1033
Njunju, Eric 570
Nkhoma, Ella T. 75
Nkuo-Akenji, Theresa 149, 193
Nkya, Watoky M. 195
Nneji, Chiaka 948
Noble, Agustina 943
Nobre, Maurício L. 872
Nobrega, Aglaer 423
Noe, Robert A. 537
Nofchissey, Robert 504, 910
Noh, John C. 440, 532, 864
Nojima, Toshi 1097
Noland, Gregory S. 1019
Nolder, Debbie 954
Nombella, Nohelly 1223
Nonato, Walker 355
Noonsate, Kittisak 418
Noor, Abdisalan 617
Noor, Ramadhan 23
Noordin, Rahmah 1113
Noormahomed, Emilia 438
Noriega, L M. 1103, 1127
Noronha, Elza 161
Norris, Douglas E. 252, 694
Norris, Laura C. 694
Norton, Alice J. 308, 752
Nosten, Francois 200, 966, 1123
Nota, Anong D. 626
Novak, Robert 1080, 1081
Novelli, Jacopo 516, 518
Novick, Richard 928
Noviyanti, Rintis 935
Novriani, Harli 897
Noyes, H.A. 549
Nsagha, Dickson S. 612
Nsobya, Samuel L. 591, 598
Ntoburi, Stephen 458
Ntoko, Mesame 193
Ntonifor, Nelson N. 193
Ntoumi, Francine 199
Ntumngia, Francis B. 639, 628
Nuchprayoon, Surang 526
Nugud, Abdel Hameed D. Mohamad Nugud 1095
Nukui, Yoko 8
Nundy, Shantanu 282
Nunes, Ashlee A. K. 740
Nunes, Keley N. B. 723
Nunes, Márcio R. T. 315, 721, 723
Nunes Neto, Joaquim P. 315, 721
Nuñez, Andrea 126, 388
Nuorti, Juha Pekka 317
Nuortti, Marja 568
Nurhayati 896
Nursamsy, Nugradzia 935
Nutman, Thomas B. 128, 129, 143, 379, 381, 382, 787, 789, 1153, 1232

Nwaiwu, Obiyo 172, 571
Nwakanama, Davis 1016, 1168
Nwizu, Chidi 881
Nwoke, Betram E. B. 67, 451
Nwuba, Roseangela I. 624
NY, Lars 558
Nyamongo, Isaac 438
Nygren, Benjamin 17, 263
Nyigo, Vitus 139
Nyirenda, Osward 728
Nyitegeka, François 791
Nyunt, Myaing M. 94, 762
Nzarubara, Bridget 818
0
O, Gbotosho G. 949
O'Brien, Meg E. 205
O'Connell, Amy E. 1152
O'Meara, Wendy P. 617, 817
O'Neil, Michael 176, 184, 472, 589
O'Reilly, Ciara E. 369
O'Reily, Michael 110
Obaldia III, Nicanor 192, 450, 970, 979
Oberhelman, Richard 798
Oberholzer, R 27
Obernauer, P.j. 847
Obonyo, Charles O. 953
Obor, David 372, 615
Obrist, Brigit 396, 573
Obure, Alfredo 106
Ocampo-D, Clara B. 469, 687, 744
Ochoa, Theresa J. 103, 366, 367, 704, 825, 878
Ochong, Edwin 1029
Ockenhouse, Chris 7, 95, 643, 646, 647, 969, 1034
Odaibo, Alex A. 624
Odero, Christopher 72
Odhiambo, Frank 72
Odidi, Beatrice 100, 101, 102, 368, 370
Odiit, Amos 93
Odoom, Shirley C. 74
Oduola, Ayoade M. J. 79, 597, 974
Oduro, Abraham R. 876
Offei Owusu, Irene 235
Offianan, Toure A. 595
Ofori-Anyinam, Opokua 28, 646
Ofulla, Ayub V. 1022
Ofware, Peter 372, 615
Ogah, G. 874
Ogah, Gladys G. 1117, 1157
Oguche, Stephen 764
Oguike, Chiaka M. 929
Ogutu, Bernhards 172, 763, 969, 983
Ogwang, Sheila 372
Ohrt, Colin 188, 189, 458, 581, 589, 758

Ojaku, Alex 395
Ojo, Kayode K. 977
Ojurongbe, Daniel O. 191
Ojurongbe, Taiwo A. 191
Ojwang-Ndong, Alice 172
Okafor, Christian M. F. 624
Okebe, Joseph 930, 1016
Okedi, Loyce 53
Okell, Lucy 31, 795
Okeola, Valeelat 948
Okiror, Robert 395
Okoko, Brown J. 264
Okoroma, Christiana N. 455
Okuda, Naoko 12
Olack, Beatrice 803
Oladoyinbo, Olatunde S. 153, 154
Olaniyan, Omobola 174
Oleinikov, Andrew V. 743
Oliveira, Bruna B. 107
Oliveira, Fabiano 866, 918
Oliveira, leda F. 654
Oliveira, Joyce 161
Oliveira, Luis F. 921
Oliveira-Ferreira, Joseli 999
Oliveras, Elizabeth 712, 715
Olley, Benjamin O. 174
Olliaro, Piero L. 470, 471, 731, 873, 952, 1193
Olmeda, Raul 978, 979
Olojede, Folake 398
Olomi, Raimos 641
Olotu, Ally 26
Olsen, Sonja J. 800
Olson, Courtney 331
Olson, Carol A. 542
Olson, Christine K. 100, 101, 102, 368, 370
Olson, Kenneth E. 122, 1085
Olson, Sarah H. 685
Olszewski, Kellen 1237
Olungah, C. O. 438
Olutayo, Mojisola C. 453
Olveda, Remigio M. 331, 1181
Olwoch, Peter 395
Omer, Rihab A. 404
Omondi, Angela 983
Omore, Richard 369
Omosun, Yusuf 624
Onapa, Ambrose 464
Ong'echa, John M. 339, 371,
640, 936, 937, 1022, 1230
Ongoiba, Aissata 220, 325, 620, 621
Ongugo, Paul O. 81
Onischuk, Lisa 1140
Onlamoon, Nattawat 46
Onofre Arce, Gabriela C. 871
Onwujekwe, Obinna 169
Onwuliri, Celestine O. E. 67, 451
Onyeka, Preet I. K. 863
Ooko, Edna A. O. 81
Opoka, Robert O. 85, 337, 1184, 1213
Opportune, Gomez G. 595

A-16

The number(s) following author name refers to the abstract number.

Opreh, Philips 218
Orago, Alloys S. S. 339
Oramasionwu, Gloria E. 375
Orcutt, Andrew 22
Ord, Rosalyn 72
Orellana, Roberto 1129
Orellana Rios, Wagner 766
Oria, Prisca 368
Oria, Reinaldo B. 107
Oriero, Eniyou C. 1016
Orimadegun, Adebola E. 153, 154
Orimba, Vincent 372
Oringanje, Chioma M. 618
Orjuela-Sánchez, Pamela 211, 604
Oronsaye, Francis E. 90, 909
Oronsaye, Praise I. Osazuwa 90
Orr, Matthew D. 537
Ortega, C. 1103
Ortega, Corrie 691, 1170
Ortega, Oscar 126, 388, 705
Ortega, Ynes 278
Ortiz, Bernardino 555
Osei Akoto, A. Y. 28
Osei-Atweneboana, Mike Y. 1228
Osei-Kwakye, Kingsley 28, 473
Osorio, Jorge E. 493, 497, 892,
899, 900, 1161
Ospina, Marta C. 497
Ossai, Doris I. N. 909
Ostera, Graciela R. 941
Otieno, Lucas 571
Otieno, Michael F. 339, 1230
Otsuki, Hitoshi 840, 1043
Otsyula, Moses G. 907
Ott, Amy C. 1023, 1042
Ottesen, Eric 528
Ottesen, Eric A. 1112
Otuonye, Ngozi M. 151
Ouari, Ali 1060
Ouattara, Florence T. 605, 606, 821
Ouedraogo, Andre Lin 1017
Ouédraogo, Alphonse 1017, 1031, 1041
Ouédraogo, Espérance 1017, 1031, 1041
Ouédraogo, Jean-Bosco 306, 985, 1060, 1082, 1084
Ouma, Collins 339, 371, 640, 936, 937, 1022, 1230
Ouma, John 785, 1233
Ouma, Peter 571
Oumar, Faye 832, 911, 912
Ousmane, Faye 832, 912
Ovalle Bracho, Clemencia 545
Oviedo, Milagros 271, 465, 552
Owaga, Chrispin 299
Owen, Andrew 1029
Owino, Simon O. 1187
Owor, Nicholas 419
Owusu, Ruth 28, 462, 473
Owusu Boahen, K. 28, 473

Owusu-Agyei, Seth 28, 462, 473, 764, 995
Owusu-Kwarteng, S. 28
Oyama, Toshifumi 12
Oyedeji, Segun I. 191
Oyibo, Wellington A. 191
Oyofo, Buhari A. 1166
Ozensoy Toz, Seray 543
Ozkoc, Soykan 543

P

Pa'au, Molisamoa 1114
Pablo, Vial A. 1103, 1127
Pabón, Adriana 981
Pachas, Paul 914, 1099
Padilla, Norma 766
Padilla-Mejia, Norma E. 164, 556
Padilla-Raygoza, Nicolas 860
Page, Anne-Laure 966
Page-Sharpe, Madhu 1195
Pagnoni, Franco 174
Paige Adams, A 318
Painter, Heather J. 1030
Palma, Eduardo R. 713
Palomeque, Francisco S. 51
Palsson, Katinka 1168
Pamba, Allan 179, 584, 764
Pancharoen, Chitsanu 147
Pandharkar, Trupti 540
Pando, Jackeline 704
Panella, Amanda J. 512, 904
Panella, Nicholas 500, 808
Paniu, Steven 1158
Pankey, George A. 274
Panning, Markus 310
Paonin, Surat 801
Parapini, Silvia 976
Paredes-Esquivel, Claudia C. 745
Parekh, Falgunee 7
Parikh, Sunil 336, 575, 730, 822
Park, Bborie K. 1092
Park, Daniel 406, 1078, 1211
Park, Gregory S. 337, 1019
Park, Mahin 279
Parker, Kenneth 414
Parker, Michael D. 62, 720
Parker, Tina 266
Parmakelis, Aristeidis 683
Parnsut, Krit 110
Parquet, Veronique 972
Parra, Beatriz 915
Parriott, Sandi K. 290
Parsons, Michele 98
Parulekar, Varsha 264, 883
Parwati, Ida 896, 897
Pasay, Cielo 52, 854
Pascale, Juan M. 1107
Pascoe, Steve 568
Pascual, Mercedes 29
Pastor, Jorge 320
Pasvol, Geoffrey 1192
Pataca, Alexandra F. 71
Patel, Jigar J. 990, 1123

Patel, Vishal 349, 578, 582, 588, 775
Patiño, Gladys 468
Patocka, Nicholas 307
Pattanarangsan, Rattaporn 801
Patterson, Noelle B. 5, 6, 7, 644, 1034, 1037
Pattinson, Robert 827
Patz, Jonathan A. 685
Paul, Richard 121
Paulson, Sally L. 1216
Pavlin, Julie A. 801
Paz Soldan, Valerie 894
Peacock, Erin 184
Peacock, Sharon J. 68
Pearce, Edward 355
Pearce, Richard 344
PearIman, Eric 380
Pearson, Richard D. 421
Peeters, Koen 619
Pei, Xinhong 812
Peixoto, Vítor S. 721
Penha-Gonçalves, Carlos 227, 229, 629
Pennetier, Cédric 233, 1217
Penny, Melissa 219
Perales, Joe B. 537
Peralta, Jose M. 279, 436
Peralta, Regina H. S. 279
Perdrizet, George 813
Pereira, Armando S. 723
Peret, Teresa C. T. 800
Perez, Carmen L. 898
Pérez, Juan 109, 1088
Pérez, Mary C. 165, 166
Perkins, Douglas J. 339, 371,
640, 936, 937, 1022, 1230
Perng, Guey Chuen 46
Perniciaro, Leon 843
Perry, Chelsey 14
Perry III, Henry B. 524
Peruski, Leonard F. 416, 418, 702
Pesko, Kendra 749
Peters, Jennifer 600, 1121, 1122
Peters, Nathan 1241
Peterson, Kristine M. 277
Petrarca, Vincenzo 681, 1168
Petri, Jr., William A. 277, 289
Pets, Evelin 923
Peyton, David H. 975
Pezzarossi, Nancy 98
Pfarr, Kenneth 515
Phillips, Aaron 489
Phillips, Anastasia 1192
Phillips-Howard, Penelope A.
214, 1033
Phipps-Yonas, Hannah 43
Phiri, Isaac K. 37
Phiri, Kamija S. 474
Phong, Nguyen C. 467
Phordee, Warunyu 702
Phuanukoonnon, Suparat 703
Piera, Kim 1183, 1194
Pierce, Mark A. 24, 642, 1005, 1039

Pierce, Susan K. 220, 325, 620, 621, 622, 623
Pierre, Druilhe 856
Pierson, Theodore C. 804
Pigeon, Olivier 1052
Pillai, Maheswaran M. 503
Pillai, Smitha 515
Pilotte, Nils 141
Pimentel, Guillermo 266
Pimgate, Chusak 125
Pinder, Margaret 793
Pineda, Fernando J. 694
Pineda, Vanessa 768, 1028
Ping Chen, Ping 644
Pinkerton, Relana 73
Pinto, Antonio G. 1175
Pinto, Joao 1168
Pinyoratanachote, Arunya 1119
Piola, Patrice 855
Pion, Sébastien D. S. 130, 1156
Piper, Joe 1085
Pirard, Marjan 1180
Pitaluga, Andre N. 55
Pitmang, Simon 584
Planer, Joseph D. 1206
Plassmeyer, Matthew L. 3, 1038
Platt, Kenneth B. 501, 809
Plattner, Jacob 162, 1205
Platzer, Edward G. 1177
Pleydell, David 403
Plikaytis, Brian 264, 883
Plotkin, Joshua B. 767
Plowe, Christopher V. 25, 728, 989, 1036
Plyusnin, Alexander 722
Plyusnina, Angelina 722
Poespoprodjo, J R. 796
Poetker, Shelene 355
Pohlig, Gabriele 542
Poinsignon, Anne 737, 1219
Pokhrel, Bharat M. 66
Polhemus, Mark 178, 544, 763, 969, 983
Pollard, William 461
Pollissard, Laurence 391
Polman, Katja 296, 364, 1150, 1180
Polsomboon, Suppaluck 260
Polyak, Christina 803
Pombi, Marco 679, 681, 693
Ponce, Karina 413
Ponce-de-Leon, Gabriel 71
Ponce-Garcia, Gustavo 1063, 1067
Pondja, A. 438
Pong, Clinton K. 934
Ponnusamy, Loganathan 780, 1097
Pontes, Maria 423
Pontes, Núbia N. 421
Poo, Jorge L. 386, 387
Poole, B. K. 122
Poovassery, Jayakumar 1188
Popper, Stephen J. 14

Porter, Kevin R. 716, 897, 896, 1109
Porto, Aurelia 784
Porto, Luiz Cristovão S. 999
Posner, Gary H. 759
Postigo, Jorge R. 871
Potts, James A. 484
Poudel, Prakash 447
Poulakakis, Nikolas 683
Poupard, Marie 1223
Poupardin, Rodolphe 232
Pourrut, Yves-Xavier 531
Powell, Jeffrey R. 683
Powers, Ann M. 500, 809
Pradines, Bruno 972
Praet, Nicolas 41
Prager, Martin 454
Prajapati, Surendra K. 224
Prakash, Nirupama 18
Prapasiri, Prabda 418
Prasad, Jayendra 294
Prasanthong, Rungnapa 385
Preaud, Jean-Marie 264
Premaratne, Prasad H. 1032
Premji, Zul 764
Premji, Zulfiqarali C. 172
Press, Cynthia 1142
Prestigiacomo, J 61
Pretrick, Moses 132
Preux, Pierre-Marie 130
Preziosi, Marie-Pierre 264, 883
Pri-Tal, Benjamin M. 668
Price, Jessica L. 720
Price, Ric 200, 796, 935, 1183, 1194
Prichard, Roger 356, 1156, 1228
Priotto, Gerardo 424
Pritt, Bobbi S. 955
Proano, Roberto 140
Proux, Stephane 966
Provost-Javier, Katie 662
Puangpeeapichai,
Thaiboonyong 1119
Puffer, Bridget A. 495
Pukrittayakamee, Sasithon 633
Pullan, Rachel L. 133
Puma, Lwipa 570
Punjabi, Narain 105
Purnama, S. 708
Pussini, Nicola 1161
Putaporntip, Chaturong 635, 637
Putnak, Robert 120
Putnam, Shannon D. 105, 426, 802

Q

Qadri, Firdausi 365, 414, 415
Qifang, Shi 1042
Quakyi, Isabella 235
Quang, Nguyen N. 449
Queiroz, José W. 421, 872
Quick, Linda 93, 816

Quick, Rob 16, 99, 106
Quijano, Eberth 1102
Quijano-Hernandez, Israel 922
Quinhento, Vatúsia 229
Quinn, Matthew H. 44
Quinnell, Rupert J. 133, 469
Quintero-Gil, Carolina 497
Qureshi, Ammar 179
Qvarnstrom, Yvonne 287, 826, 1176

R
Raczniak, Greogry 1166
Radhakrishnan, Sujatha 479
Rahman, Muhammad Aziz 319
Rahman, Mahmudur 319, 1222
Rahul Fadnis, Prachi 905
Rai, Dev R. 1147
Raikhel, Alexander S. 1174, 1199
Raj, Vishal 108
Rajakaruna, Rupika S. 226
Rajapandi, Thavamani 230, 939
Rajasekariah, G-Halli R. 76, 86,

92, 448

Rajwans, Nimerta 1184
Rakers, Lindsay J. 1117
Raksanegara, Ardini S. 1109
Ram, Pavani K. 17, 18, 100, 101,
102, 263, 368, 370
Ramaiah, Kapa 1112
Ramakrishnan, Vijay 298
Ramamurty, Nalini 834
Ramanathan, Roshan 420, 1153
Ramanathan, Suresh 873, 1193
Ramaswmy, Rajendranath 161
Ramelan, Wahyuning 13
Ramey, Kiantra I. 917
Ramineni, Bhanumati 645
Ramírez, Andrés 546
Ramirez, Cesar 744
Ramirez, Josue 57
Ramirez, Jose L. 428, 1071
Ramírez, Martha C. 165
Ramirez, Ruth E. 899
Ramirez-Sierra, Maria Jesus 844, 922
Ramos, Mary 898
Ramos-Rodriguez, Mariana 709
Ramzy, Reda M. R. 131
Randeniya, Preethi V. 1032
Randrianarivelojosia, Milijaona 611, 613
Ranford-Cartwright, Lisa 407
Rankov, Leonid 503
Ranson, Hilary 232, 1215
Ranucci, Elisabetta 30
Rao, Grace 136, 1118
Rao, Muralidhara 19
Rao, Ramakrishna U. 427, 433, 517
Rasgon, Jason L. 662, 676
Rasmussen, Terri A. 459
Ratcliffe, Amy 93

Rathore, Dharmendar 594, 811
Rattendi, Donna 557
Rätti, Osmo 317
Rausch, Kelly M. 22, 645
Ravdin, Jonathan 280
Raverdy, Sylvine 515, 523
Rawson, Ian 631
Ray, Prabhati 581
Rayavara, Kempaiah 221
Rayner, Julian C. 653, 1045
Razuri, Hugo R. 309, 320
Razzauti Sanfeliu, Maria 722
Rea, I. 422
Redding, Kevin M. 1152
Reddy, Michael R. 738
Reddy, Vijayalakshmi 905
Redmond, Seth 1078
Reed, John L. 989
Reed, Steven G. 564
Reeder, John 819
Reese, Necole 978, 979
Regis, David 7, 1034
Reif, Kathryn E. 783
Reimels, William 810
Reimer, Lisa J. 241
Reimert, Claus M. 300
Reingold, Arthur 705
Reis, Eliana A. G. 751, 902, 903
Reis, Mitermayer G. 68, 673,
751, 901, 902, 903
Reisen, William K. 256, 1092
Reiter, Karine 3, 1038
Reithinger, Richard 216
Relman, David A. 14
Remich, Shon 458
Remington, Jack S. 1142
Remoue, Franck 324, 737, 1093, 1219
Renaud, François 206
Resende, Mafalda 641
Restrepo, Bertha N. 899, 900
Reuter, Stefan 402
Rewerts, Cindy 537
Reyes, Lissette 98, 777
Reyes, Miguel 705
Reyes, Nora 1099
Reyes, Sharina 7
Reyes-Solis, Guadalupe C. 1063,

1067

Reynolds, Christine 568
Reynolds, Steven 73
Rhman, Bassem Abdel 266
Rhodes, Michael T. 85
Ribeiro, Gilmar J. 673
Ribeiro, Isabela 731, 951
Ribeiro, José M. 941, 1070, 1172
Ribeiro, Paula 307, 741
Richards, Allen 780
Richards, Frank O. 35, 216, 335,
527, 874, 1003, 1117, 1157,

1160

Richards, Stephanie L. 692, 749
Richardson, Eugene 827
Richardson, Jason 416, 734, 980
Richardson, Susan E. 262

Richardus, Jan Hendrik 1167
Richie, Thomas L. 5, 6, 7, 644,
1018, 1034, 1037, 1046
Richman, Adam 1
Richter, Martin H. 1126
Rick, Fairhurst 866
Rider, Mark A. 849, 1083
Rieckmann, Karl H. 450, 973
Riedesel, Melissa A. 1007
Riehle, Michael A. 668, 669, 1135
Rienthong, Somsak 702
Rijal, Basista Prasad 66
Riley, Eleanor 26, 32, 795, 997, 1016, 1229
Rimi, Nadia A. 715
Riner, Diana K. 242
Ringwald, Pascal 774
Rini Poespoprodjo, Jeanne 935
Rippert, Anja 991
Riquelme, R. 1127
Riscoe, Mike 760
Rivera, Cedillo 887
Rivera, Fulton P. 825
Rivera, Yisel 886
Rivero-Cardenas, Nubia 732
Rivers-Davis, Andrea 288
Rivière, Gilles-Jacques 568
Rizal, Suman 445
Rizvi, Moshahid A. 224
Rizzo, Nidia R. 869
Robb-McCord, Judith 216
Robert, Willie 1130
Roberts, Jacquelin 1142
Roberts, Lisa O. 321
Robertson, Janelle L. 275
Robins, Melissa L. 18
Robinson, Jamie S. 834, 905
Robles Lopez, Jose Luis 57
Robles-Barcena, Miguel 39
Roca, Yelin 1099
Rocha, Crisanta 14, 47, 388
Rocha, Claudio 316, 890
Roche, James K. 104, 288
Rocheleau, Thomas A. 663
Rochford, Rosemary 581
Rock, Dabiré 1217
Rocke, Tonie E. 1161
Rodart, Itatiana F. 901
Rodnak, Ditthakorn 957
Rodpradit, Prinyada 125
Rodrigo, W.W. Shanaka 486, 490
Rodrigues, Janneth 691, 1070, 1170
Rodrigues, Raquel F. 561, 920
Rodrigues, Sueli G. 721
Rodrigues-Silva, Rosangela 436
Rodriguez, Aixa 557
Rodriguez, Nilda E. 160
Rodriguez-Neaves, Nydia A. 1063
Roeffen, Will 993
Roehrig, John T. 489, 830
Roellig, Dawn M. 548
Rogers, David W. 1069

A-18

The number(s) following author name refers to the abstract number.

Rogers, William O. 599, 876
Rogerson, Stephen 75, 323, 819, 935, 1195
Rogier, Christophe 972
Rohim, Abdul 376
Rohmer, Michel 187
Rollinson, David 296
Romanini, Maria C. 923
Romano, Alessandro 423
Romeo, Sergio 976
Romero, Ibeth 454
Romero, Liliana M. 825
Romero, Sylvia 1140
Romero-Severson, Jeanne 1072
Romig, Thomas 404
Romo, Flores 888
Romoser, Margaret 695
Romoser, William S. 695
Roncal, Normal 979
Roncalés, María 971
Rondon, Johan 533
Rondon, Maritza 240
Rood, Michael 480
Roper, Cally 72, 226, 344
Rosa, Maria Elisa A. 1203
Rose, Robert C. 486, 490
Rosedo-Paredes, Elsy del Pilar 732
Rosen, David 772
Rosenberg, Ian 414
Rosenblatt, Jon E. 955
Rosenthal, Philip J. 84, 187, 336, 575, 591, 598, 729, 730, 818, 822, 1125
Rosero, Doris A. 686
Ross, Jennifer M. 278
Rossi, Shannan L. 9
Rossignol, Marie 737
Rossnagle, Eddie 743
Rothenberger, Meghan K. 280
Rothman, Alan L. 125, 484, 889, 891
Rothstein, Yarrow 189, 581, 758
Rousset, François 1079
Rout, Jonathan 136, 1118
Rowland, Mark 377
Rowley, David 813
Rowley, Wayne A. 501
Roy, Alma 1090
Roy, Sajal 553
Roy, Sharon 1140
Ruang-areerate, Toon 267
Ruangweerayut, Ronnatrai 865
Rubie, Jennifer J. 76
Rudge, James W. 329
Rudiman, Irani F. 13
Rudiman, Pandji I. F. 897, 1109
Ruebush, Trent K. 1026
Ruiz, Marilyn O. 1098
Ruiz Espinosa, Aniran 1150
Rujan, Iulian N. 938
Rule, Ana 1143
Rullas, Joaquín 706
Rungruang, Thanaporn 181
Rungsihirunrat, Kanchana 593

Rupprecht, Charles E. 265, 312
Rusangwa, Christian 870
Rusconi, Carla 976
Rush, Amy C. 520
Russell, Brandy 834
Russell, Tanya L. 247
Russo, Elizabeth T. 16
Ruth, Laird 106
Rutta, Acleus 23, 608
Rwakimari, John B. 395, 1125
Ryan, Edward T. 365, 414, 415
Rye, Erika 813
s
Sa, Juliana M. 774
Saad, Magdi D. 1166
Saavedra-Rodriguez, Karla L.
1061, 1063, 1067
Sabeti, Pardis C. 406, 1211
Sabin, Lora 602, 1006, 1008
Saborío, Saira 705
Sachs, Paige B. 242
Sack, R. B. 97
Sacko, Adama 241
Sacko, Moussa 359
Saffa, Sidiki 1130
Safi, Najibullah 54
Safi, Noorulhaleim Z. 54
Sagara, Issaka 24, 172, 1005, 1036
Sagnon, N'Falé 1059, 1084
Sah, Binod K. 113, 488, 491
Sahasakmontri, Nongnard 120
Saito, Akio 30
Saito, Mayuko 798
Sakamoto, Hirokazu 1044
Sala Gallini, Giuseppe 443
Salanti, Ali 641
Salas, Carola J. 194, 197, 1025
Salazar, Milagros 312
Salcedo, Enrique 1029
Saldaña, Azael 768, 1028
Salgado, Hugo 590
Lidwina Salim 439
Salim, N. 27
Sall, Amadou A. 1106, 1165
Sallam, Atiya 1179
Sallas, William M. 171
Sallusto, Federica 44
Salman, Sam 1195
Salmavides, Frine 878
Salmon-Mulanovich, Gabriela
312, 320
Salumbides, Brenda 940
Salvana, Edsel Maurice T. 380
Salwati, Ervi 13
Sama, Grace 1015
Sama, Woquan 239
Samake, Sibiry 866
Samalvides, Frine 879
Samarakoon, Upeka 990
Sambian, D. 28
Sambo, Maria R. B. 229

Sambo, Y. 1117
Samir, Ahmed 266
Sampane-Donkor, Eric 21
Sampath, Aruna 188, 581
Samsi, Kiki M. 896
Samsi, Tatang K. 896
Samudio, Franklyn 1028
Samy, Abdallah M. Samy. 442
Sananikhom, Pany 121
Sanasuttipun, Wiwan 800
Sanchez, Bruno A. Marinho. 1021
Sanchez, Deyanira 1107
Sanchez, Eduardo 468
Sanchez, Felix 1101
Sandison, Taylor 729, 944, 1050
Sang, Rosemary C. 907
Sangare, Cheick P. O. 950
Sangare, Lansana 1182
Sangha, Jasbir K. 1048
Sangweme, Davison 342
Sankara, Dieudonne 464
Sanogo, Dramane 128, 129, 787, 789, 1232
Sanogo, Mariam 1004
Sanogo, Youssouf 1004
Sanon, Antoine 1082
Sanon, Souleymane 1017, 1031, 1041
Sanprasert, Vivornpun 526
Santaella-T, Julian 469
Santamaría, Ana María 768, 1028
Santana, Nelma 902, 903
Santelli, Ana Carolina F. S. 951
Santiago, Gilberto A. 123
Santiago, Helton 815, 1175
Santolalla, Meddly L. 197, 1025
Santolamazza, Federica 1168
Santos, Carlos G. 673
Santos, Fatima 999
Santos, J. M. 751
Santos, Silvane B. 784
Santos, Thiago B. 919
Santos da Silva, Natal 211
Saracino, David 414
Saravia, Nancy 454
Saric, Jasmina 352, 363
Sarkar, Rouha A. 715
Sarkar, Shrisendu 374
Sarr, Demba 1188
Sarr, Jean Birame 324
Sarr, Jean B. 254
Sarr, Ousmane 406, 1211, 1212
Sasi, Philip 991
Sateren, Warren B. 269
Satimai, Wichai 957, 958, 1119, 1120
Satoguina, Judith S. 1229, 1016
Sattabongkot, Jetsumon 980, 1043
Sauerwein, Robert 196, 993
Saul, Allan 22, 642, 1047
Saunders, David 589, 1207
Saute, Francisco 71

Sauve, Laura 262
Savage, Harry 671
Savarese, B. 26, 28
Saviolakis, George A. 182
Savranskaya, Tatiana 643
Sawadogo, Simon P. 1082
Saye, Renion 24, 787, 987, 1005
Sayer, David 688
Sazzad, Shahed 319
Scaraffia, Patricia Y. 1136
Schaffner, Stephen F. 406, 1211
Schal, Coby 1097
Schapira, Allan 219, 792
Scheld, W. Michael 73
Schenider, Bradley S. 513
Schieck, Elise 991
Schiehser, Guy A. 973
Schlesinger, Jacob J. 11, 44, 486, 490
Schlienger, Raymond 570
Schmaedick, Mark A. 1114
Schmid, Caecilia 424
Schmidt, Justin 60
Schmutzhard, Erich 1190
Schnabel, David 799, 983
Schochetman, Gerald 962
Schoepp, Randal J. 314, 714
Scholtz, L. 1103, 1127
Schountz, Tony 1104, 1105
Schousboe, Mette L. 226, 328
Schuller, Elisabeth 835
Schultz Hansen, Kristian 820
Schulze, Alexander 396, 573
Schwab, Kellogg 1143
Schwabe, Christopher 34, 790
Schwartz, Ira 48
Schwartz, Owen 36
Scollard, D. M. 61
Scott, Erick 36
Scott, Paul 269
Scott, Philip 355
Scott, Thomas W. 49, 125, 682,
734, 890, 894, 1089, 1091
Sebastian, Silvie 1185
Sebunya, Kiwe 16
Séchaud, Romain 568
Seck, Ibrahima 967
Secor, William Evan 297, 299, 302, 330, 332, 333, 358, 362, 742, 788
Sedegah, Martha 7, 646, 1034, 1037
Seethamchai, Sunee 635, 637
Segeja, Method 23
Segeja, Method D. 608, 1012
Segovia, Rosana 413
Segura, Jose Luis 34, 209, 790
Seguro, Antonio 425, 444, 446
Sehgal, Rahul 108
Seidahmed, Osama 1057
Seif el-Din, Sayed H. H. H. 293
Seino, Kathy 506
Sem, Rithy 599
Sembuche, Samuel 23, 155, 195, 608

Semenova, Elena 6, 644
Sen, Debrup 553
Senanayake, Sanath C. S. A. 842
Senbanjo, Idowu O. 218
Sendagire, Hakim 882
Senglat, Marie 1093
Senkoro, Kesheni 525
Senn, Nicolas 819
Sepe, Daphne 607
Serghides, Lena 1187
Serrano, Adelfa 190, 555, 578
Servilleja, Jesus E. 107
Servina, Gomorrai 1195
Seth, Misago D. 1012
Setiabudi, Djatnika 896
Severini, Carlo 206
Severson, David D. 1072, 1074
Sevilleja, Jesus Emmanuel A. D. 104, 288
Shaffer, Donna 22, 642
Shafir, Shira 1001
Shahum, Andrea 156
Shaikh, Gulvahid 152
Shaikh, Jean 528
Shakarian, Alison M. 157
Shakya, Krishna P. 427
Shamad, Mahdi 140, 1160
Shane, Hillary L. 333
Shang, Chuin-Shee 482, 496
Shainheit, Mara G. 1242
Shankar, P A. 19
Shanks, Dennis 202, 467, 973
Shapiro, Theresa A. 762
Sharakhov, Igor V. 674, 675, 677, 678
Sharakhova, Maria V. 674, 675,

677, 678

Shargie, Estifanos B. 35, 216, 1003
Sharlow, Elizabeth R. 472
Sharma, Rishi 503
Sharma, Surya K. 203
Sharma, Yagya D. 1011
Sharp, Brian 234
Shehata, Magdi G. Shehata. 442
Sheikh, Alaullah 414
Sheikh, Mehraj 1226
Shepard, Donald S. 113, 390,
488, 491
Sheth, Anandi N. 16
Shi, Hui 1186, 1210
Shi, Pei-Yong 806
Shi, Ya Ping 214, 594, 826, 1033
Shibata, Hiroki 893
Shiff, Clive J. 305, 393
Shikama, Félicien 870
Shimada, M. 1056
Shimp, Richard 3
Shin, Dongyoung 1072
Shin, Hyunjin 1151
Shin, Sang Woon 1174, 1199
Shinondo, Cecilia 986, 988
Shomari, M. 27
Shono, Yoshinori 1218
Shrestha, Mohanish 537

Shu, Bo 719
Shu, Jianfen 277
Shukla, Man M. 1006, 1008
Shultz, Leonard 587
Siba, Peter 703, 1158, 1195
Sibley, Carol H. 973
Sie, Albert 819
Siegel, Richard M. 379
Sien, L. W. 708
Sihuincha, Moises 890
Sikalima, Jay 305, 393
Sikasunge, Chummy S. 37
Silengo, Shawn J. 493, 892
Sillah, Ansumana 1225
Silva, Breno M. 117
Silva, Helder R. 902, 903
Silva, Liliane G. 919
Silva, Luciano K. 673, 751
Silva, Sheyla 47
Silva, Wilda 704
Silva-Ibanez, Maria 440
Silveira, Alda Maria S. 303
Sim, Cheolho 655, 664
Sim, Kim Lee 1
Sim, Shuzhen 1071
Simard, Frederic 679, 681, 683, 746, 1169
Simkin, Alfred 222
Simmons, Cameron 1224
Simon, Cousens 856
Simon-Chazottes, Dominique 805
Simondon, François 324, 737, 1219
Simondon, Kirsten 324
Simons, Hilary 852
Simpson, Jennifer E. 697
Simpson-Haidaris, Patricia J. 11
Sims, Jennifer S. 775
Sims, Peter A. 775
Simsek, Kemal 543
Sinden, Robert E. 207, 250
Siner, Angela 946
Singh, Balwan 650
Singh, Balbir 946
Singh, Jasjit 65
Singh, Inder 205
Singh, Jaspreet 108
Singh, Mrigendra P. 602, 1006, 1008
Singh, Nalini 610
Singh, Neeru 341, 602, 984,
1006, 1008, 1011, 1013
Singh, Puspendra P. 1011, 1013
Singh, Rupa 447
Sinkala, Moses 570
Sinnis, Photini 928
Siqueira, Isadora 784
Siqueira, Joao B. 113, 491
Siqueira, Nilton G. 436
Siriarayapon, Potjaman 110
Sirima, Sodiomon 859, 1017, 1031, 1041
Sirimanna, Ganga 550
Sirinarm, Pokasem 702

Sirisopana, Narongrid 801
Siriwardana, Yamuna D. 549, 550
Sisouk, Thongchanh 121
Sissoko, Mahamadou S. 24, 25,
756, 1005, 1036
Sit, N.W. 1193
Siv, Sovannaroth 1049
Sivapalan, Murugesu 1098
Skerker, Jeffrey M. 977
Skinner, Jason 379
Slater, Madeline 818
Slatko, Barton 430, 515, 516, 518
Slebodnick, Carla 811
Sligar, Jessica M. 537
Slike, Bonnie M. 10
Sloan, Lynne M. 955
Slotman, Michel A. 683, 738
Slowikowski, Jacek J. 107
Slutsker, Laurence 72, 212, 214,
372, 594, 826, 1033
Sluzas, Emily M. 495
Smartt, Chelsea T. 692
Smilkstein, Martin 760
Smith, Bryan 178, 1120
Smith, Bryan L. 763
Smith, Geoffrey 1188
Smith, Kathryn 7
Smith, Kristin E. 661, 1171
Smith, Lucy A. 572
Smith, Michael P. 780
Smith, Peter 94, 950
Smith, Peter J. S. 1171
Smith, Stella I. 151
Smith, Thomas A. 219, 792, 995
Smithyman, Anthony M. 76, 86,

92, 448

Snell, Paul 1225
Snider, Cynthia 289
Snounou, Georges 633
Snow, Robert 817
Sobel, Jeremy 423
Soberon, Valeria R. L. 197
Sobsey, Mark 15
Socha, Aaron 813
Socheat, Duong 599, 865, 997
Sodha, Samir V. 99
Sodiomon, Sirima B. 1035
Soeharso, Purnomo 13
Sofarelli, Theresa 460
Sohn, Eun-Hwa 942
Soisson, Lorraine 5, 7, 25, 646,
647, 969, 1034, 1036
Sokhal, Buth 426
Sokhna, Cheikh 324, 737
Sokolova, Yuliya Y. 459
Solberg, Owen D. 1164
Solorzano, Elizabeth 59
Solorzano, Nelson 850
Somé, Fabrice 985
Somoulay, Virasack 121
Song, Guanhong 22, 1043
Sonye, George 699, 1056
Soong, Lynn 560, 1197

Sorensen, Bess 1124
Sorgho, Hermann 306
Soriano Arandes, Antoni 701
Sorontou, Yohanna 196, 376
Sorvillo, Frank 1001
Sosa-Estani, Sergio 860
Soto, Giselle 709
Soto, J. 422
Soto-Castellares, Giselle 798
Soulama, Issiaka 1017, 1031, 1041
Souleymane, Sanou 877, 1035
Soumaoro, Lamine 129, 787, 789, 1232
Soumaré, Mohamadou L. 1106
Soumaré, Peinda O. L. 1106
Soumarou, Lamine 128
Sousa, Jason 978, 979
Sousa, James D. 872
Sousa, Taís N. 225, 1021
Souza-Neto, Jayme A. 1071
Sovero, Merly 719, 1101
Sow, Cheikh S. 1219
Sow, Samba 264
Sow, Seydou 364
Sow, Samba O. 797, 883
Sowunmi, Akintunde 574, 597, 764
Spano, Robyn 480
Sparatore, Anna 976
Specht, Sabine 383
Spichler, Anne 425, 444, 446
Spillmann, Cynthia 58
Spiro, David 520
Spitzer, Dirk 1208
Spring, Michele 7, 646, 647, 1040
Sreng, Bun 110
Srethapranai, Vanlaya 110
Srichantrapunt, Wisuth 801
Sridaran, Sankar 347, 408
Srijan, Apichai 270
Srikiatkhachorn, Anon 484, 891
Srinivasan, Prakash 838
Sripa, Banchob 290
Srisaengchai, Prasong 418
Srivastava, Shweta 285
Sriwichai, Sabaithip 1120
Ssekabira, Umaru 395
Ssewanyana, Isaac 1189
Staalsoe, Trine 627
Staedke, Sarah G. 84, 93, 576, 725, 816, 1125
Stafford, Richard 1
Stange-Thomann, Nicole 1211
Stankiewicz, Maria 233
Staples, J. E. 419
Stark, Lillian 500
Stauffer, William 280
Stedman, Timothy 230, 939
Steel, Cathy 143
Stefaniak, Maureen E. 6, 644
Steger, Kirby 356
Steinauer, Michelle L. 330
Steinbeiss, Victoria 7

A-20

The number(s) following author name refers to the abstract number.

Steketee, Richard 216, 792
Stephane, Tchicaya E. 236
Stephens, Chad 540
Stepniewska, Kasia 859
Steurer, Francis 541
Stewart, Alison 272
Stewart, Ann 965, 1036
Stewart, Lindsay 773
Stewart, V. A. 25
Stich, August 402
Stieglitz, Elliot 309
Stiles, Jonathan K. 917, 984
Stinchcomb, Dan T. 493, 511, 892
Stocker, J. T. 786
Stoddard, Steven T. 890, 894
Stojan, Jure 233
Stolk, Wilma A. 1159
Stone, Chris M. 736
Stoops, C. A. 708
Stout, Rhett W. 783
Stoute, José A. 1208
Stracener, Catherine N. 1208
Straimer, Judith J. 991
Streit, Thomas 141, 1154
Strode, Clare 232
Stryjewska, B. 61
Stuart, Melissa A. 845
Studer, Alain 219
Stufe, Ansgar 130
Sturgeon, Michele M. 480
Su, Qin 143
Suarez, Gloria 777
Suarez, Jorge 552
Suarez, Luis 1099
Suarkia, Dagwin L. 703
Suaya, Jose A. 113, 390, 488, 491
Suazo, Harold 733
Subedi, Janardan 1147
Suchdev, Parminder 106
Sudimack, Dan 1147
Sudjana, Primal 896, 897, 1109
Sudo, Atsushi 412
Sudré, Adriana P. 436
Sueker, J. Jeremy 862
Sugiarto, P. 796
Suhaimi, Mohamed 1193
Sukkam, Sanya 1119
Sulaiman, Suad M. Ahmad. Sulaiman. 1095
Sullivan, David J. 94,393
Sultana, Rebeca 712, 715, 1131, 1222
Sultana, Sharmin 319
Sumba, Peter Odada 215, 326, 1020
Sun, Jenny 68
Sun, Jiaren 560
Sun, Jian 660
Sun, Jianxin 1172
Sun, Joseph C. 336
Sun, Tao 399
Sun, Wellington 123, 502, 898
Sunderland, Deirdre 1143
Sunyakumthorn, Piyanate 267

Supali, Taniawati 1113
Supan, Christian 199
Suphapeetiporn, Kanya 481
Surin, Johari 276, 1179
Susanto, Nugroho H. 896, 897, 1109
Susapu, Melinda 607, 1115, 1158
Sutherland, Colin J. 32, 346, 954
Sutthirattana, Saithip 416, 418
Suwandono, Agus 716
Suwansrinon, Kanitta 63
Suzuki, Ryosuke 111
Suzuki, Stephanie 593
Svennerholm, Ann-Mari 365
Sweat, Mark 540, 547
Swierczewski, Brett E. 757
Syafruddin, Din 196, 376, 1185
Sykes, Melissa L. 163, 536
Sylla, Massamba 769, 1065
Sylla, Mariam 797
Sylverken, J. 28
Syphard, Luke M. 347, 408
Szeki, Sebastian 1192
Szumlas, D.E. 847

T

Tabachnick, Walter J. 692, 749
Tachibana, Mayumi 840, 1043
Tadesse, Zerihun 35, 216
Taft, Andrew S. 754
Tagle, Joseph 115
Tahar, Rachida 198
Tajima, Shigeru 8
Takala, Shannon L. 25, 1036
Takasaki, Tomohiko 8
Takem, Ebako N. 204
Takeo, Satoru 1043, 1044
Talaat, Kawsar 420
Talisuna, Ambrose 177, 576, 1125
Tallo, Veronica 389, 1181
Tally, John 1207
Tamarozzi, Francesca 405, 443
Tamminga, Cindy 7, 1034
Tan, Asako 990
Tan, B. 457
Tan, Kavin 1210
Tan, Lian H. 113
Tan, Ratna I. 897, 1109
Tan, Shyong Wei 1186
Tangpukdee, Noppadon 873, 1184
Tanner, M. 27
Tanomsing, Naowarat 633
Tanowitz, Herbert B. 558, 565
Tanwisaid, Kittisak 418
Tanyuksel, Mehmet 435, 543
Taoromina, Joanna 717
Tapia, Laura L. 1014
Tapia, Milagritos 264, 797, 883
Tapia, M. 1103, 1127
Tappero, Jordan W. 729, 944, 1050

Tar, Moses 565
Tarafder, Mushfiqur R. 1181
Taramelli, Donatella 976
Tarazona-Santos, Eduardo M. 225
Targett, Geoffrey 324
Tarique, Abdullah 414
Tarleton, Rick L. 1196
Tarnagda, Zékiba 41
Tarun, Alice S. 837
Tassara, E. 1127
Taylor, Diane W. 327, 934, 1015
Taylor, Mark J. 430, 431
Taylor, Melanie M. 130
Taylor, Ronald P. 338
Taylor, Robert W. 376
Taylor, Terrie E. 728, 772, 989
Taylor, William 859
Taylor, Walter 470, 471, 873, 952, 1193
Teates, Kathryn 106
Teelen, Karina 993
Teferi, Tesfaye 1003
Teixeira, Clarissa 866, 918, 921
Teja-Isavadharm, Paktiya 589
Tekete, Mamadou 727, 950
Tekwani, Babu 581, 857
Telford, Sam R. 779, 781
Telleria, Erich L. 846
Tellez, Yolanda 126
Tempone, Antonio J. 55
Tenaw, Eskinder 35, 216
Tendongfor, Nicholas 384
Tenorio, Antonio 118
ter Kuile, Feiko O. 214, 609, 731, 1033
Terashima, Angelica 879
Terlouw, Dianne 214, 731, 1013, 1033
Tero, D'thong 599
Terpening, Sara 62
Terpinski, Jacek 973
Tesh, Robert B. 316, 724
Tetteh, Kevin K. A. 636, 773
Teuscher, Franka 1121
Thailayil, Janis 1069
Thamsborg, Stig M. 438
Thamthitiwat, Somsak 418
Thangamani, Saravanan 258, 1172
Thanh, Nguyen X. 449, 467
Thapar, Mita 179
The Trung, Dinh 1224
Theander, Thor G. 328, 345, 601, 601, 641
Theilgaard, Zahra 155
Theodore, Ted 824
Thera, Mahamadou A. 25, 1036
Thesing, Phillip 728, 989
Thévenon, Audrey D. 934
Thi Thu Thao, Le 1224
Thiam, Sylla 967
Thibodeaux, Brett A. 830
Thien, Nguyen X. 467
Thior, Papa M. 967

Thipsuk, Charnchai 702
Thisyakorn, Chule 147
Thisyakorn, Usa 147, 481
Thomas, Charlie 6, 644
Thomas, Stephen 120
Thompson, Andrew 401
Thompson, Richard C. A. 1204
Thompson, Trevor 459
Thompson, Winston 917
Thomson, Russel 1234
Thongkukiatkul, Amporn 840
Thonnard, Joelle 25, 1036
Thuma, Philip E. 94, 208, 393, 840, 988
Thuy, Tran T. 12, 893
Thwing, Julie I. 71, 72
Tibenderana, James 177
Tierney, Ev 646
Tijani, Muyideen K. 624
Tilahun, Abate 1003
Timbine, Atime 727
Tindanbil, Daniel 201
Tine, Roger C. L. 967
Ting, Li-Min 928
Tinh Hien, Tran 1224
Tinley, Kathleen E. 868
Tinoco, Yeny 719
Tiono, Alfred 584, 1017, 1031, 1041
Tipayamongkholgul, Mathuros 114, 496
Tiruvury, Hemavarna 707
Tisch, Daniel J. 215, 326, 380, 529, 1158
Tiwari, Avdesh 445
Tjaden, Jeffrey A. 1166
Tjitra, Emiliana 796, 865, 935, 1183, 1194
Tobias, S. 708
Todd, Charles W. 535
Toe, Hyacinthe K. 1084
Tohya, Yukinobu 412
Tokechi, Arturo 468
Tokumasu, Fuyuki 941
Toledo, J 422
Tolosa, Michel Tolosa 1221
Tolouei Semnani, Roshanak 379
Toma, Luigi 173
Tomashek, Kay M. 898
Tomc, Christa 695
Tomicic, V. 1127
Tompkins II, Rodman D. 1108
Tongkong, Dokrak 1119, 1120
Tongren, Jon Eric 477
Top, Samphornarann 213, 1010
Torii, Motomi 840, 1043, 1044
Torreele, Els 424
Torrero, Marina N. 144, 378, 786
Torres, Katherine 630
Torres, Pedro 971
Torrez, Miguel 209
Tosh, Donna 647
Tosi, Alessia 976
Touabi, Malek 966
Touch, Sok 426, 802

Touré, Abdoulaye M. 249
Toure, Seydou 464
Toure, Sekou 950
Townson, Harold 745
Tozan, Yesim 945
Tran, Tuan 999
Tran, Thanh N. 970
Traore, Abdrahamane 220, 622
Traore, Boubacar 94, 220, 325,
620, 621, 622, 987
Traore, Bourama 866
Traoré, Broulayé 1182
Traore, Drissa 25
Traore, Hamidou 987
Traore, Karim 25, 1036
Traore, Oumar B. 727
Traore, Pierre 866
Traore, Sitan 1004
Traoré, Sekou F. 50, 128, 129, 241, 249, 787, 789, 1232
Traore, Zoumana I. 727, 950
Trape, Jean-François 324
Traub-Cseko, Yara M. 55, 846
Travassos da Rosa, Amelia P. A. 724
Travassos da Rosa, Elizabeth S. 723
Travers, Thomas 449
Trenholme, Katharine 932
Trianty, Leily 935
Trimarsanto, Hidayat 935
Tripathi, Lalit M. 857
Triquell, Maria F. 923
Trivedi, Kavita 99, 369
Trofimovich, Lily 464
Trongtokit, Yuwadee 1220
Trovoada, Maria de Jesus 227, 229
Troyo, Adriana 684
Trudel, Richard 695
Trueba, Gabriel A. 413, 1164
Trung, Trieu N. 467
Tsamo, Etienne 187
Tsang, Victor C. W. 439, 440, 864
Tse, Margaret C. L. 46
Tseng, Hsin-Chi 492
Tsetsarkin, Konstantin 513, 1111
Tshefu, Kitoto Antoinette 1000
Tshiswaka Kashalala, Gauthier 853
Tsofa, Benjamin 617
Tsuboi, Takafumi 840, 968, 1043, 1044
Tsukayama, Pablo 563
Tu, Zhijian 674, 678, 1168
Tuan, Tran M. 12, 893
Tuchman, Jordan 602, 1006, 1008
Tucker, Bradley J. 501
Tucker, Kathryn 969
Tucker, Matthew S. 1122
Tuddenham, Edward 1224
Tuero, Iskra 452
Tuikue Ndam, Nicaise G. 641
Tukahebwa, Edridah M. 300

Tuladhar, Nhuchhe Ratna 66
Tumpey, Abbigail 718
Tumwine, James K. 1141
Tuong, Vo V. 12
Turell, Michael J. 257, 696
Twu, Olivia 774
Tzipori, Saul 1141

U

Ubalee, Ratawan 980
Ubol, Sukathida 483
Uchime, Onyinyechukwu 3, 1038
Udagedara, Chandani 550
Udhayakumar, Venkatachalam
197, 198, 343, 347, 392, 408,
594, 984, 1013
Uejio, Christopher 57
Ueno, Norikiyo 160
Ugwuegbulam, Cletus 179
Ullum, Henrik 155
Umaru, John 335, 874, 1117، 1157
Umeh, Rich E. 764
Umezawa, Eufrosina S. 535
Ungchusak, Kumnuan 49
Upadhayay, Ram P. 1147
Upadhyaya, Megha 150
Urassa, Honorathy 247
Urbano Ferreira, Marcelo 211, 604
Urbina, Mary Paz 331
Urdaneta-Marquez, Ludmel 1063
Urgaonkar, Sameer 190
Uribe, Andres 497
Usurup, Jethro 703
Utzinger, Jürg 352, 363
Uzochukwu, Benjamin 169
V
V, Kumaraswami 382
V, Udhayakumar 1011
Vaheri, Antti 317
Vahey, Maryanne 1122
Vaidya, Akhil B. 1030
Vaillant, Michel 470, 471, 873, 952, 1193
Valderrama, Amy L. 1140
Valderrama, Liliana 915
Valderrama-A, Carlos 687
Valdivieso, F 1127
Valea, Innocent 964
Valecha, Neena 865
Valencia, Cristian 1202
Valenzuela, Jesus G. 848, 866, 918, 921, 1070
Valerio, Laura 693
Vallejo, Efrain 1099
Valsanciacomo, Francesca 995
Van Beckhoven, Dominique 1223
van Buuren, Stef 731
van den Bogaart, Erika 976
Van den Eede, Peter 409, 994
Van Der Auwera, Gert 409
van der Ven, Andre J. A. M. 1185
van Dijk, Janneke 94
Van Doren, Waltruda 791
Van Dormael, Monique 1180
Van Dyke, Melissa K. 996
van Eijk, Annemieke 369
Van Eijk, Erica 323
Van geertruyden, Jean-Pierre
323, 791, 823, 829
van Gemert, GeertJan 993
van Kuppevelt, Toin H. 30
Van Ngoc, Tran 1224
Van Overmeir, Chantal 409, 567, 994
Van Voorhis, Wesley C. 977
Vanchinathan, Veena 353
vande Vegte-Bolmer, Marga 993
Vanden Eynde, Jean Jacques 557
VanEkeris, Leslie A. 1171
Vangordon, Gail 480
Vanlandingham, Dana L. 513, 1111
Vansadia, P. 26
VanBuskirk, Kelly M. 628
Vapalahti, Olli 317
Vargas, Jorge 1099, 1100
Vargas, Maria Jose 14
Vargas-Inchaustegui, Diego A. 560, 1197
Vasan, S S. 1068
Vasanthapuram, Ravi 834, 905
Vasconcelos, Helena B. 315
Vasconcelos, Pedro F. C. 315, 721, 723
Vasilakis, Nikos 9
Vasquez, Alicia 312
Vasquez, Laura 271, 552
Vasquez, Libia R. 271, 465
Vasquez-Prokopec, Gonzalo 894
Vasquez-Ricciardi, Laura C. 465
Vaughan, Jefferson A. 522, 696
Vaughn, David 120
Vaughn, David W. 484
Vazquez-Prokopec, Gonzalo M. 58

Vedvick, Thomas S. 564
Vekemans, J. 26, 27, 28
Velandia, Daniel 545
Vélez, Ivan D. 497
Velez, Jason 904
Velez-Ramirez, Daniel E. 164
Vely, Jean Francois 592
Venkatesan, Meera 676
Vennervald, Birgitte J. 300, 359
Verani, Jennifer R. 333
Verastegui, Hector 367
Verastegui, Manuela 1201
Vercruysse, Jozef 364
Vereecken, Kim 296, 364
Verley, Janice 152

Vermeire, Jon J. 814, 1231
Verne, Eduardo 825
Verotta, Luisella 30
Vesely, Brian 547
Vestergaard, Lasse S. 155, 328, 345, 601
Vial, Pablo A. 713
Victor, Melendez 589
Vidal-Mas, Jaume 971
Videa, Elsa 705
Vieira, Conceição M. A. 315
Vieira, Rute 229
Viera, Sara 586, 587
Vijaykadga, Saowanit 1119
Villaça, Pedro 425, 444, 446
Villafana, T. 26, 27
Villalta, Fernando 924
Villamizar, Nestor J. 134
Villanueva, Miguel 109
Villaran, Manuel 269, 1102
Villarreal, Juana 165, 166
Villegas, Elci 1220
Villegas, Leopoldo 408, 594
Villegas, Rossana 943
Villinger, Francois 46
Villinski, Jeffrey T. Villinski. 442
Vinayak, Sumiti 594
Vincent, Corbel 1217
Vincent, Tim 1016
Vincent, William 222
Vinetz, Joseph 196, 452
Virtanen, Mailis 570
Vitalis, Renaud 746
Vithessonthi, Kanyalak 147
Vivas, Livia 976
Viviani, Simonetta 264, 883
Vizuet-de-Rueda, Juan C. 556
Vogel, Mari 538
Volkman, Sarah 406, 772, 1211
von Seidlein, L. 26
Vongphrachanh, Phengta 121
Vonthanak, Saphonn 802
Vora, Neil 729, 944, 1050
Vosswinkel, Katherine 141
Vu Thi Que, Huong 391
Vudtakanok, Judpon 801
Vuitton, Dominique A. 399
Vulule, John M. 72, 215, 326,
339, 369, 372, 615, 640, 651,
689, 690, 936, 937, 1007,
1019, 1020, 1022, 1230

W

Wabwire Mangen, Fred 395, 816
Wagner, Marissa 787
Waidab, Woraman 481
Waite, Erica 294
Waitumbi, John N. 338, 965, 983
Walker, Edward D. 214, 689, 690, 1098
Walker, Larry 188, 189, 581, 857
Walker, Martin 1148, 1149
Walker, Todd W. 1058

A-22

The number(s) following author name refers to the abstract number.

Walls, Colleen D. 281
Walsh, Douglas 983
Walther, Michael 773, 930, 1016, 1229
Walton, Shelley F. 52, 854
Wamachi, Alex 785, 1233
Wamae, Anna W. 100, 101, 102, 368
Wamae, Annah W. 370
Wang, Cunshan 374
Wang, Chien-Chih 913
Wang, Marie 1102
Wang, Susan P. Y. 815
Wang, Tianping 329
Wang, Wei-Kung 496
Wang, Xunde 1182
Wang, Yulan 352
Wang, Zhinning 1122
Wanji, Samuel 140, 384, 1156
Wannemuehler, Kathleen 16, 99
Wanzira, Humphrey 729, 944, 1050
Ward, Brian J. 483, 1227
Ward, Stephen A. 340, 584, 764, 989, 991, 1029, 1024
Ware, Lisa 25, 646, 647, 1036
Warhurst, David C. 346
Warikar, N. 796
Wasson, Peggy 189
Watany, N. 847
Watcharapichat, Pochaman 801
Waterman, Stephen 57
Waters, Norman 983
Watkins de Jong, Laurel 669
Wattanavijitkul, . 851
Watts, Douglas M. 318, 1128
Weaver, Scott C. 9, 318
Weber, Ingrid B. 419
Webster, Bonnie L. 296
Webster, Jayne 572
Webster, Joanne P. 308, 329, 334, 752
Wei-Mei, Ching 272
Weil, Gary J. 92, 131, 427, 429, 433, 517, 520, 522, 1112, 1113, 1115
Weill, Mylène 765
Weina, Peter J. 182, 183, 185, 186, 555, 763, 925, 1207
Weinberg, J. Brice 1194
Weinger, Merri 16
Weinkopff, Tiffany S. 432
Weiss, Greta 220, 325, 620, 621, 623
Weiss, Walter 1046
Wellems, Thomas E. 774
Wellington, Sun 886
Wen, Tzai-Hung 492, 496
Werbovetz, Karl 540
Were, Tom 339, 371, 640, 936, 937, 1022, 1230
Were, Vincent 106
Wesson, Dawn M. 255, 509, 510, 843, 849, 907, 1083, 1090, 1097

West, Mark 845
Westerman, Richard 758
White, Bradley J. 679, 1075
White, Nicholas J. 188, 633, 859
Whitten, Miranda M. A. 1069
Whittington, Jessica 2
Whitty, Christopher J. M. 31, 84, 377
Wibowo, Heri 1113
Wicaksana, B. 708
Widdowson, Marc-Alain 98
Widjaja, Susanna 13, 896
Widman, Douglas G. 499, 807
Wiegand, Roger 406, 578, 579,
582, 772, 977, 1078, 1211
Wierzba, Thomas F. 426, 802
Wiggan, O'Neil 493
Wijaya, S. 708
Wikel, Stephen K. 258, 1172
Wilairatana, Polrat 873, 873
Wiley, Michael R. 321, 1163
Wilhite, Kara 1130
Wilkins, Patricia 440, 532, 864
Williams, Calvin 927
Williams, Francis 7
Williams, Frank 1034
Williams, Gail M. 399, 403
Williams, Jeffrey F. 19, 875
Williams, Jack L. 643
Williams, Kimberly D. 1147
Williams, Katherine L. 45, 495
Williams, Martin 671
Williams, Maya 13, 426, 708,
716, 896, 897, 1109
Williams, Steven A. 141, 432,
1112, 1115, 1154
Williams, Thomas 817
Williams-Blangero, Sarah 1147
Williamson, John 214, 332, 803, 1033
Willingham, A. Lee 38, 438
Willingham III, Lee A. 37
Wills, Bridget 1224
Wilson, Danny 326
Wilson, Marianna 826
Wilson, Michael D. 223, 253
Wilson, Mary E. 160, 161, 350, 421, 916
Wilson, Mark L. 29, 996
Wilson, Nana 917
Wilson, Patrick T. 625
Wilson, Shona 359
Wilson, William C. 257
Winkelmann, Evandro R. 111
Winstanley, Peter A. 584, 764
Winter, Rolf 760
Winthrop, Kevin L. 278
Wireko Brobby, N.A. 28
Wirth, Dyann F. 190, 349, 406,
578, 579, 582, 588, 597, 634,
772, 775, 977, 1078, 1211,
1212
Withers, Mark R. 969
Wittes, Janet 969
Wittlin, Sergio 974, 975

Witzig, Richard S. 858, 1014
Woehlbier, Ute 288, 1011
Woerdemann, Meike 1150
Wojcik, Richard 710
Wojno, Abbey 695
Wolfe, Nathan 531
Wölfel, Roman 310, 494
Wolkon, Adam 212, 216
Wolofsky, Kayla T. 1214
Won, Kimberly Y. 141, 1154
Wondji, Charles 1215
Wong, Edward 610
Wong, Jennifer 77
Wong, Jacklyn 1089
Wong, Kimberly Y. 1113
Wongsrichanalai, Chansuda 599, 1119
Woodring, Joseph V. 270
Woodson, Sara E. 831
Wootton, Susan H. 375
Wortmann, Glenn W. 95, 544
Wring, Stephen A. 537, 1205
Wu, Bo 430, 515, 516, 518
Wu, Baolin 1007
Wu, Xiaobo 1208
Wu, Yimin 3, 22, 1043
Wylie, Blair J. 602, 1006, 1008
Wynn, Willard W. 1058
Wysocki, Vicki H. 1136

X

Xa, Nguyen X. 1051
Xi, Zhiyong 428, 1071
Xia, Annie 162
Xia, Ai 674, 677
Xiang, Charlie 228
Xiao, Lihua 278, 282, 1140
Xiao, Shu-Yuan 724
Xiao, Shuhua 1178
Xiavier, Karen 1140
Xie, Dongsheng 162
Xie, Lisa H. 184, 186, 1207
Xin, Lijun 560, 1197
Xiong, Xu 510
Xu, Xiyan X. 802
Y
Yabsley, Michael J. 478, 551, 548
Yakob, Laith W. 33
Yaméogo, Laurent 1159
Yamo, Emmanuel O. 936, 937
Yan, Guiyun 33, 603, 672, 1002
Yan, Zheng 110
Yang, Yu R. 399, 403
Yanni, Emad 461
Yarlett, Nigel 1205
Yaro, Alpha S. 249
Yaro, Jean Baptiste 1017, 1031,
1041
Yartel, Anthony 477
Yartlet, Nigel 557

Yasnot, Maria F. 943
Yasunami, Michio 12, 893
Yates, Matthew 509
Yates, Terry L. 713
Yattara, Oumar 987
Yau, Vincent 816
Yébakima, André 232, 1221
Yeboah-Antwi, Kojo 602, 1006, 1008
Yeh, Ching-Ming 568
Yeka, Adoke 395
Yellow-Duke, Archibong 472
Yeo, Kee Thai 651
Yeo, Tsin W. 1183, 1194
Yi, Yong 520
Yin, Jing 1186, 1210
Yoder, Jonathan 1140
Yohannes, Ambachew Medhin 35, 216
Yohannes, Gideon 1003
Yohn, Christopher 215, 651
Yoo, Won Gi 291, 292
Yoon, In-Kyu 125, 389
Yoonprakhon, Somkid 702
Yosaatmadja, Francisca 323
Yoshino, Timothy P. 754
Young, Stephen 1140
Young, Suzanna A. 64
Youssouf, Kaboré 856
Yozwiak, Nathan 705
Yp-Tcha, Marie-Michèle 1221
Yu, K.S. 457, 851
Yu, Xin 275
Yumari Uzcátegui, Nathalie 317
Yusibov, Vidadi 356
Yusuf, Bidemi 174
Yuwono, Djoko 13, 896, 897

Z

Zaidenberg, Mario 58
Zamalloa, Hernán 312
Zamora, Jorge 658
Zamora Perea, Elvira 766
Zamudio-Meza, Horacio 895
Zanolari, Boris 170
Zanotto, Paolo M. A. 1106, 1165
Zapata, Angela C. 546
Zapata-Estrella, Hiatzy 566
Zarife, Maria Alice S. 902, 903
Zavaleta, Nelly 366
Zegarra, Raul 320
Zeng, Qiang 184
Zerihun, Mulat 1003
Zhan, Bin 815
Zhang, Bo 806
Zhang, Jing 184, 186, 1207
Zhang, Lixin 413
Zhang, Shuyi 159
Zhang, Si-Ming 298
Zhang, Xuebin 660
Zhang, Xing 670
Zhang, Yanling 3
Zhang, Y.K. 162

Zhang, Zhongsheng 977
Zhao, Dazhi 565
Zheng, Qiang 1207
Zhong, Daibin 1002
Zhou, Ainong 1015
Zhou, Guoli 656
Zhou, Hong 4, 5, 652
Zhou, Huchen 162
Zhou, Huayun 245
Zhu, Daming 22, 1047
Zhu, Guoding 245
Zhu, Jinsong 670
Zhu, Xiaohua 540
Zhuang, Shijie 207, 250
Ziegler, Sarah A. 724
Zielinski-Gutierrez, Emily 57
Zimmerman, Dominica 717
Zimmerman, Dan 1018
Zimmerman, Peter A. 607, 996, 1158
Zink, Rebecca 519, 521
Zinyowera, Sekesai 342
Zongo, Issaka 985
Zou, Zhen 1174, 1199
Zuluaga, Lina 981
Zunt, Joseph R. 1102, 1129
Zwang, Julien 952

A-24

