THE LAMBARÉNÉ-ORGAN-DYSFUNCTION SCORE (LODS) IS A SIMPLE CLINICAL PREDICTOR FOR FATAL MALARIA IN AFRICAN CHILDREN

Raimund Helbok¹, Eric Kendjo², Saadou Issifou², Peter Lackner³, Charles R. Newton⁴, Maryvonne Kombila⁵, Tsri Agbenyega⁶, Klaus Dietz⁷, Kalifa Bojang⁸, Erich Schmutzhard⁹, Peter G. Kremsner²

¹Medical Research Unit, Albert Schweitzer Hospital, Lambaréné, Gabon; Innsbruck Medical University, Clinical Department of Neurology, Austria, ²Medical Research Unit, Albert Schweitzer Hospital, Lambaréné, Gabon; Department of Parasitology, Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany, ³Innsbruck Medical University, Clinical Department of Neurology, Innsbruck, Austria, ⁴Centre for Geographical Medicine, Kenya Medical Research Institute Kilifi, Kilifi, Kenya; Neuroscience Institute, Institute of Child Health, University College London, London, United Kingdom, ⁵Department of Parasitology, Mycology and Tropical Medicine, Faculty of Medicine, University of Health Sciences Libreville, Libreville, Gabon, Gabon, ⁶University of Science and Technology, School of Medical Science, Kumasi, Ghana, ⁷Department of Medical Biometry, University of Tübingen, Tübingen, Germany, ⁸Medical Research Council Laboratories, Banjul, Banjul, Gambia

Plasmodium falciparum malaria accounts for more than a million deaths annually, mostly among young children in sub-Saharan Africa. Identifying those who are likely to die is difficult. Prior studies suggested that quantitative scores (Multi-Organ-Dysfunction Score and simplified Multi-Organ-Dysfunction Score, MODS and SMODS) are useful markers predicting morbidity, but the cohorts were not large enough to detect an association with case fatality. We used stepwise backward logistic regression to select the best predictors out of nine variables evaluated on admission to predict death in 23,800 hospitalised children with P. falciparum malaria. The study was conducted from December 2000 to May 2005 in six hospital-based research units (Banjul in The Gambia, Blantyre in Malawi, Kilifi in Kenya, Kumasi in Ghana and Lambaréné and Libreville in Gabon) in a network established to study severe malaria in African children (SMAC). The Lambaréné-Organ-Dysfunction-Score (LODS) counts how many of the three variables coma, prostration and deep breathing are present. A LODS > 0 (OR = 9.6; 95%CI 8.0-11.4) has a sensitivity of 85% to predict death and a LODS < 3 is highly specific for survival (98%). The LODS is a simple clinical predictor for fatal malaria in African children. This score provides a sufficiently accurate and rapid identification of children needing either referral or increased attention.

SULFADOXINE-PYRIMETHAMINE VERSUS UNSUPERVISED ARTEMETHER-LUMEFANTRINE VERSUS UNSUPERVISED AMODIAQUINE-ARTESUNATE FIXED-DOSE FORMULATION FOR UNCOMPPLICATED FALCIPARUM MALARIA IN BENINESE CHILDREN: A RANDOMIZED EFFECTIVENESS NON-INFERIORITY TRIAL

Jean-François Faucher¹, Agnès Aubouy¹, Adicat Adeothy¹, Justin Doritchamou¹, Hortense Kossoù¹, Hyacinthe Amedome¹, Achille Massougbodji², Michel Cot³, Philippe Delorono²

¹IRD, Cotonou, Benin, ²PNLP, Cotonou, Benin, ³Ministry of Public health, Cotonou, Benin, ⁴FSS, Cotonou, Benin, ⁵IRD, Paris, France

In order to measure the potential impact of the 2004 malaria treatment guidelines in Benin that recommend ACTs (artemisinin-based combination therapies: artemether-lumefantrine as first line therapy and amodiaquine-artesunate as second line therapy) in the management of uncomplicated malaria in young children, we conducted an open randomised non-inferiority trial to compare the effectiveness of sulfadoxine-pyrimethamine (SP) to unsupervised artemether-lumefantrine (AL) and to unsupervised amodiaquine-artesunate fixed-dose formulation (ASAQ). The trial took place in southern Benin in children aged 6 to 60 months with fever or a history of fever, and a 6-weeks follow-up was performed after treatment. The primary objective was a comparison of day 28 PCR-corrected effectiveness rates. 240 children (48 SP, 96 AL and 96 ASAQ) with a mean age of 26 months were randomized from May to October 2007. Before PCR correction, the intention to treat (ITT) analysis (239 patients) showed day 28 effectiveness rates of 20.8%, 78.1% and 70.5% with SP, AL and ASAQ respectively. After PCR correction, day 28 ITT effectiveness rates were 27.1%, 83.3% and 87.4% respectively. The per protocol analysis (217 patients) showed day 28 effectiveness rates of 21.7%, 88.0% and 76.1% with SP, AL and ASAQ respectively. After PCR correction, day 28 effectiveness rates were 28.3%, 94.0% and 93.2% respectively. Comparisons of SP with ACTs were highly significant in any case, whereas there was no significant difference between AL and ASAQ in the PCR-corrected analyses. The rate of new infections was significantly higher in children treated with ASAQ compared to those treated with AL. Two children treated with SP had to be hospitalized for severe anemia. There was no difference between treatment arms in terms of incidence of adverse events. No severe adverse event was related to a study drug. The potential impact on malaria morbidity and mortality of the replacement of SP by ACTs in this study area could be highly significant.

RISK FOR SEVERE DISEASE IN ADULTS WITH FALCIPARUM MALARIA

Geoffrey Pasvol¹, Anastasia Phillips², Paul Bassett³, Sebastian Szekri⁴, Stanton Newman⁵

¹Imperial College London, Harrow, United Kingdom, ²Northwick Park Hospital, Harrow, United Kingdom, ³University College London, London, United Kingdom

We conducted a clinical study of malaria acquired worldwide in adults in a non-endemic country over a 16 year period to determine risk factors for severe Plasmodium falciparum malaria. All patients managed by our unit from 1991 to 2006 with confirmed malaria were prospectively evaluated. Factors predicting disease severity according to a) strict World Health Organisation (WHO) criteria, b) a composite measure of unfavourable outcome and c) length of hospital stay were identified through logistic-regression analysis. We evaluated 676 episodes, 482 (71%) due to P. falciparum and 194 to non-falciparum malaria. Black patients were at significantly reduced risk of developing severe disease, an unfavourable outcome or prolonged stay in hospital compared to Asians or whites. Of six patients with falciparum malaria who died, none were black. Patients with parasitemias ≥2% had odds of severe malaria of 12 times higher than patients with <2% parasites. Patients with a history of previous clinical malaria, regardless of ethnicity, were at significantly reduced risk of WHO-definition severe malaria. Ethnicity and parasitemia are independent risk factors for severe falciparum malaria while a history of previous malaria significantly reduces the risk of severe disease (WHO Criteria). These results have important implications for management guidelines in non endemic countries.
ASSESSING THE CARDIAC EFFECTS OF ARTESUNATE (AS) AND AMODIAQUINE (AQ) IN HEALTHY VOLUNTEERS IN A SAFETY AND PK, SINGLE DOSE, RANDOMISED, TWO PHASE CROSS OVER STUDY OF A NEW FIXED DOSE AS/AQ COMBINATION AND LOOSE AS + AQ

Walter Taylor1, Mohamed Suhami2, Siew Gab2, Suresh Ramanathan3, Sharif Mansor3, Michel Vaillant4, NW Sitt5, Piero Olliaro6, Jean-Rene Kiechel7, Viswanvar Navaratnam8
1Oxford University, Hanoi, Vietnam, 2Universiti Sains Malaysia, Kubang Kerian, Malaysia, 3Universiti Sains Malaysia, Penang, Malaysia, 4Centre for Health Studies, Luxembourg, Luxembourg, 5WHO/TDR, Geneva, Switzerland, 6DNDi, Geneva, Switzerland

Evaluating QT prolongation as a risk marker for Torsades de Pointe ventricular tachycardia is an essential step for registering new drugs. AS and AQ are well established, antimalarial drugs but have few cardiac data. AQ may be cardiotoxic in overdose. In a randomized, two phase, pharmacokinetic and safety, cross over study, healthy Malaysian adults received fixed-dose AS/AQ (200 + 540mg) and loose AS+AQ (200 + 600mg) 60 days apart. ECGs were performed at baseline, 1h, 2h, 4h, 24h, Day 60 and repeated at cross-over. The QT interval was corrected using the Fridericia formula (QTcF). Analysis was by ANOVA for repeated measures. There were no statistically significant differences between the two arms regarding the PR, QRS and QTcF intervals over time. The baseline QTcFs were 396 (±18) ms for both arms. Mean QTcF (AS+AQ) increased significantly at 2h (7±13 ms, p=0.018) and 4h (7±11 ms, p=0.008). The only significant change for AS/AQ was a decrease (p=0.013) in the QTcF on D60: -14 (-25 to -4) ms. Post baseline, most volunteers had normal QTcFs despite increases or decreases in the QTcF. Only one (male) volunteer had a ‘flag’ QTcF of 456 ms (AS/AQ +4h, phase 2). Changes in the PR (maximum values = 206 to 211 ms, n=2) and QRS (maximum values = 122 and 127 ms, n=2) intervals were modest. Heart rates were normal during both phases and trended down over time. The ECG interval changes were small and transient, consistent with natural variation and regression of the mean. PK ECG analyses will be done to determine if a drug effect may be present.

INTRAVASCULAR HEMOLYSIS: A NEGLECTED MECHANISM OF NITRIC OXIDE QUENCHING, ENDOThelial DYSFUNCTION AND IMPAIRED PERFUSION IN SEVERE FALCIPARUM MALARIA?

Tsin W. Yeo1, Daniel Lambah2, Emiliana Tjitra3, Retno Gitawati3, Walter Taylor2, Mohamed Suhaimi2, Siew Gab2, Suresh Ramanathan3, Mohammad Arif5, Mohamed Suhaimi2, Siew Gab2, Suresh Ramanathan3, Sharif Mansor3, Michel Vaillant4, NW Sitt5, Piero Olliaro6, Jean-Rene Kiechel7, Viswanvar Navaratnam8
1Oxford University, Hanoi, Vietnam, 2Universiti Sains Malaysia, Kubang Kerian, Malaysia, 3Universiti Sains Malaysia, Penang, Malaysia, 4Centre for Health Studies, Luxembourg, Luxembourg, 5WHO/TDR, Geneva, Switzerland, 6DNDi, Geneva, Switzerland

Hemolysis of infected and uninfected red cells has long been recognized as a significant contributor to malarial anemia, but has not been thought of as a contributor to endothelial dysfunction and activation in severe malaria. In sickle cell disease, hemolysis causes quenching of endothelial nitric oxide (NO) resulting in pulmonary hypertension and endothelial activation. We hypothesized that similar to other hemolytic states, cell free hemoglobin from red cell hemolysis would contribute to quenching of nitric oxide and endothelial dysfunction in severe falciparum malaria. Plasma hemoglobin was measured in adults with moderately severe (n=78) and severe malaria (n=49), and in healthy controls (n=23), and was related to endothelial function measured using reactive hyperemia-peripheral arterial tonometry (RH-PAT, a measure of endothelial NO bioavailability). Linear regression was used to relate concentrations of plasma hemoglobin with malaria disease severity, lactate, endothelial function and plasma histidine rich protein-2 (HRP2). Plasma cell-free hemoglobin was associated with disease severity, being higher in severe malaria (median 91.7 ng/ml [IQR 53.7-125]) than in moderately severe malaria (median 44.2 ng/ml [IQR 22.2-76]) or healthy controls (median 22.6 ng/ml [IQR 15.8-40.8]). Plasma hemoglobin was independently associated with endothelial dysfunction (r=0.33, p<0.0001) and increased venous lactate. As well as contributing to anemia in falciparum malaria, hemolysis causes NO quenching and may be a significant contributor to endothelial dysfunction and impaired microvascular perfusion in severe malaria.

PHARMACOKINETIC PROPERTIES OF CHLOROQUINE AND SULFADOXINE-PYRIMETHAMINE IN PREGNANCY

Harin A. Karunajeewa1, Ivo Mueller2, Madhu Page-Sharpe1, Irwin Law1, Sam Salman1, Gomorroai Servina2, Jovitha Lammey2, Stephen Rogerson3, Peter Siba2, Kenneth F. Ilett1, Timothy M. Davis1
1University of Western Australia, Perth, Australia, 2Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea, 3University of Melbourne, Melbourne, Australia

Intermittent preventive treatment in pregnancy (IPTp) may reduce maternal and infant morbidity and mortality. However, few pharmacokinetic (PK) and/or safety data exist for antimalarial drugs in pregnancy. Although chloroquine (CQ) and sulfadoxine-pyrimethamine (SP) are used widely and considered safe, PK data is needed to optimize dosing and maximize effectiveness of IPTp. We have, therefore, performed a PK study of CQ + SP in 30 pregnant women and in a control group of 30 age-matched non-pregnant women in Papua New Guinea. All received one dose of SP (1500/75mg: mean 28/1.4mg/kg) and 3 daily doses of CQ (450mg/day: 8.5mg/kg/day). Women were bled up to 16 times over the ensuing 42 days and plasma assayed for CQ, desethylchloroquine (DECQ), S, N-acetyl-sulfadoxine (NA-S), and P by HPLC. From compartmental modeling of concentration-time data, the volume of distribution (Vd), clearance (Cl) and elimination half-lives (t1/2) of CQ, S and P were determined. AUC was determined by non-compartmental analysis. Differences in PK parameters between pregnant and non-pregnant groups were assessed by non-parametric statistical methods. A two-compartment model best-described the CQ data and showed that, compared with non-pregnant controls, pregnant subjects had similar Vd (median 180 vs 156l/kg in non-pregnant group: P=0.5) but significantly more rapid Cl (15 vs 11ml/kg: P =0.04), shorter t½e (196 vs 236h: P =0.03) and lower AUC for non-pregnant women in Papua New Guinea. All received one dose of SP (1500/75mg: mean 28/1.4mg/kg) and 3 daily doses of CQ (450mg/day: 8.5mg/kg/day). Women were bled up to 16 times over the ensuing 42 days and plasma assayed for CQ, desethylchloroquine (DECQ), S, N-acetyl-sulfadoxine (NA-S), and P by HPLC. From compartmental modeling of concentration-time data, the volume of distribution (Vd), clearance (Cl) and elimination half-lives (t1/2) of CQ, S and P were determined. AUC was determined by non-compartmental analysis. Differences in PK parameters between pregnant and non-pregnant groups were assessed by non-parametric statistical methods. A two-compartment model best-described the CQ data and showed that, compared with non-pregnant controls, pregnant subjects had similar Vd (median 180 vs 156l/kg in non-pregnant group: P=0.5) but significantly more rapid Cl (15 vs 11ml/min/kg: P =0.04), shorter t½e (196 vs 236h: P =0.03) and lower AUC for both CQ (34 vs 56µg.h/l: P <0.01) and DECQ (25 vs 47µg.h/l: P <0.01). A one-compartment model best-described the disposition of S showing significantly larger Vd (0.24 vs 0.21l/kg: P <0.01), more rapid Cl (0.022 vs 0.016ml/min/kg: P <0.01), shorter t½e (134 vs 161h: P <0.03) and lower AUC (22 vs 34µg.h/l: P<0.01) in pregnant subjects. Data for P will also be presented. Because lower plasma concentrations of CQ, DECQ and S could compromise both curative efficacy and post-treatment prophylactic properties in pregnant patients, IPTp regimens should incorporate higher mg/kg doses than recommended for non-pregnant patients.

CD8+ T CELL RESPONSES IN NONLYMPHID TISSUE AND PARASITE CONTROL DURING TRYPANOSOMA CRUZI INFECTION

Matthew H. Collins, Rick L. Tarleton
University of Georgia, Athens, GA, United States

Chagas disease is caused by persistent infection with Trypanosoma cruzi. Amastigotes of this protozoan parasite replicate in host cell cytosol, allowing parasite antigens to be presented via class I major
TLR INVOLVEMENT DURING EXPERIMENTAL MALARIA: IMPLICATIONS FOR BOTH ENDS OF THE CLINICAL SPECTRUM OF HUMAN DISEASE

Constance A. Finney, Ziyue Lu, W. Conrad Liles, Kevin C. Kain
University of Toronto, Toronto, ON, Canada

Plasmodium berghei is a murine model for cerebral malaria whilst *P. chabaudi* is used to study hyperparasitaemia and anemia. The first is characterized by early excess inflammation, leading to host immunopathology and death (`hyperresponsive' model). The second lacks the initial inflammatory response, however, death occurs later through uncontrolled parasitaemia (`hyporesponsive' model). We hypothesized that each model represents a pole of the clinical spectrum observed in human disease, and anticipated that TLRs (and their signaling pathways) would be involved in these divergent clinical outcomes. Despite the important role played by TLR2 in GPI signaling, in both models, no differences were observed between infected TLR2-/- animals compared to wildtype controls (WT). *P. berghei*-infected TLR2-/- mice did not show increased survival compared to susceptible WT mice; parasitaemias, weight, hematocrit, urine hemoglobin and plasma cytokines were similar between the two groups. Furthermore, as with WT mice, TLR2-/- animals infected with *P. chabaudi* proved resistant to infection. No difference was observed in any of the measured parameters between the groups. Contrastingly, in both models, infected IRAK4-/- mice (IRAK4 is a molecule involved in TLR signaling) showed marked differences to WT and TLR2-/- mice during infection. When infected with *P. berghei*, the survival of IRAK4-/- mice (40% at day 14) was highly improved compared to controls (0% by day 9). Parasitaemias and serum cytokine levels were decreased (TNF, IFNγ, IL-10, p<0.05, Mann-Whitney U), emphasizing the detrimental role of IRAK4 and TLR signaling in early inflammatory responses to malaria. During *P. chabaudi* infection, however, the survival of IRAK4-/- animals was significantly lower than WT animals; the mice also had higher parasitaemias (Kruskal-Wallis, p<0.01), greater weight loss and lower serum cytokine levels than wild-type mice (TNF, two-way ANOVA, p<0.05). This demonstrates the key role played by IRAK4 late in infection, required for parasite clearance. Data from our experiments demonstrate that abrogating inflammation at one end of the clinical spectrum (cerebral malaria) is beneficial to the host, whilst, at the other end of the spectrum (hyper-parasitaemia/anemia), it worsens disease. Our findings emphasize the importance of integrated studies in order to fully understand the impact of treatment/interventions on malaria infection.

MOSQUITO RUNX4 IN THE IMMUNE REGULATION OF PPO GENES AND ITS EFFECT ON AVIAN MALARIA INFECTION

Sang Woon Shin, Zhen Zou, Kanwal Alvarez, Vladimir Kokoza, Alexander Raikhel
University of California Riverside, Riverside, CA, United States

Melanization is a prominent defense mechanism employed by arthropods, including mosquitoes. Conflicting results have been reported when discerning whether phenoloxidase (PO) activation and melanin synthesis can successfully combat the infections of many bacterial and fungal species in flies and the malaria parasites in mosquitoes. The extensive gene expansion of 10 proPO genes, which encode key enzymes to activate melanization, in the mosquito, *Aedes aegypti*, lead us to hypothesis that mosquito melanization reactions have been diversified for distinct purposes. Thus, we showed that the loss of malaria parasites by ookinete melanization in Cactus-depleted mosquitoes is a distinct mechanism from the melanotic tumor formation resulting from Serpin-2 depletion in the mosquito, *Aedes aegypti*. Furthermore, we report that the parasitic loss in the mosquitoes with Cactus depletion is mediated by RUNX4, the orthologue of *Drosophila* Lozenge and a specific transcriptional activator of immune-inducible proPO genes. Specifically, we found that microbial infection induced four mosquito PPO genes, which are proposed to...
be independent of Serpin-2 inhibition. This up-regulation is activated indirectly by the Toll immune pathway and directly by RUNX4. Mosquito RUNX4 specifically bound to the RNF-binding motifs from the mosquito PPO gene promoters and activated Drosophila PPO genes in S2 cells. Concurrent silencing of RUNX4 and Cactus dismissed the activation of immune-inducible PPO genes resulting from Cactus depletion and thus compromised the killing of the avian malaria parasite Plasmodium gallinaceum. Our findings reveal the presence of a RUNX4-dependent immune activation of PPO genes under the regulation of the Toll immune pathway and its potential immune role to restrict the parasite development. We will further address the role of RUNX4 and immune-inducible PPOs in the immune response against the malaria parasite.

1200

STIMULATION OF TOLL-LIKE RECEPTOR 2 BY PLASMODIUM FALCI*PARUM* GLYCOSYLPHOSPHATIDYLINOSITOLS ENHANCES MACROPHAGE INTERNALIZATION OF PARASITIZED AND UNINFECTED ERYTHROCYTES

Laura Erdman, Kevin C. Kain

University of Toronto, Toronto, ON, Canada

Toll-like receptors (TLRs) are highly conserved innate sensing receptors that activate host defenses upon detection of microbial products. In the context of malaria, *Plasmodium falciparum* glycosylphosphatidylinositol (PGPI) have been shown to stimulate macrophage cytokine production via TLR2. In addition to their role in inflammation, TLRs have also been characterized as regulators of phagocytosis. *P. falciparum* parasitized erythrocytes (PES) can be non-opsonically internalized by macrophages in a process predominantly mediated by scavenger receptor CD36. Moreover, uninfected erythrocytes (UEs) are rendered susceptible to macrophage clearance during malaria infection due to surface modifications, and this is believed to contribute to the pathogenesis of severe malarial anemia. We hypothesized that stimulation of macrophage TLR2 by PGPI would enhance innate clearance of PEs as well as malaria-exposed UEs. We first employed a PE model consisting of anti-CD36 antibodies conjugated to human erythrocytes (“anti-CD36 EBAbs”). Pre-stimulation of primary human and murine macrophages with PGPI or a synthetic TLR2 agonist (FSL-1) significantly increased uptake of anti-CD36 EBAbs in a TLR2-dependent manner. Internalization of *P. falciparum* PE PEs was similarly enhanced. Fc-mediated phagocytosis of IgG-opsonized PEs was modestly increased by TLR2 activation. Notably, stimulation of macrophage TLR2 enhanced phagocytosis of UEs isolated from *P. falciparum* culture. Thus, in this in vitro system, TLR2-mediated macrophage activation enhanced clearance of both *P. falciparum* PEs and malaria-exposed UEs. These data underscore the complexity of the role of TLRs in malaria infection: TLR2-enhanced phagocytosis may benefit infected individuals by decreasing parasite burden, but in other contexts may predispose to severe malarial disease. Internalization of *P. falciparum* PEs was similarly enhanced phagocytosis may benefit infected individuals by decreasing malaria-exposed PEs in a process predominantly mediated by scavenger receptor CD36. Moreover, uninfected erythrocytes (UEs) are rendered susceptible to macrophage clearance during malaria infection due to surface modifications, and this is believed to contribute to the pathogenesis of severe malarial anemia. We hypothesized that stimulation of macrophage TLR2 by PGPI would enhance innate clearance of PEs as well as malaria-exposed UEs. We first employed a PE model consisting of anti-CD36 antibodies conjugated to human erythrocytes (“anti-CD36 EBAbs”). Pre-stimulation of primary human and murine macrophages with PGPI or a synthetic TLR2 agonist (FSL-1) significantly increased uptake of anti-CD36 EBAbs in a TLR2-dependent manner. Internalization of *P. falciparum* PE PEs was similarly enhanced. Fc-mediated phagocytosis of IgG-opsonized PEs was modestly increased by TLR2 activation. Notably, stimulation of macrophage TLR2 enhanced phagocytosis of UEs isolated from *P. falciparum* culture. Thus, in this in vitro system, TLR2-mediated macrophage activation enhanced clearance of both *P. falciparum* PEs and malaria-exposed UEs. These data underscore the complexity of the role of TLRs in malaria infection: TLR2-enhanced phagocytosis may benefit infected individuals by decreasing parasite burden, but in other contexts may predispose to severe malarial anemia by enhancing UE destruction. Therapeutic targeting of TLR pathways in malaria must be carefully considered.

1201

CONGENITAL CHAGAS DISEASE TRANSMISSION IN SANTA CRUZ, BOLIVIA

Caryn Berni1, Maritza Calderon2, Carlos LaFuente1, Gerson Galdos1, Maria del Carmen Abastoril3, Hugo Aparicio1, Mark Brady1, Lisbeth Ferrufino1, Manuela Verastegui1, Robert H. Gilman4, Cesar Naquira1

1Centers for Disease Control and Prevention, Atlanta, GA, United States, 2Universidad Peruana Cayetano Heredia, Lima, Peru, *Hospital Universitario Japones, Santa Cruz, Bolivia, 3Asociacion Benefica PRISMA, Lima, Philippines, 4Asociacion Benefica PRISMA, Lima, Peru, 5Johns Hopkins University School of Public Health, Baltimore, MD, United States

Although Santa Cruz city has never had vectorial transmission, Chagas disease prevalence is high due to migration from endemic rural areas. We conducted a study of congenital Chagas disease in a public hospital. From Nov. 2006 to June 2007, women presenting for delivery were enrolled in serological screening. Trypanosoma cruzi infection was confirmed when specimens were positive by 2 or more serological assays (whole epimastigote and recombinant ELISAs, IFA). Maternal blood specimens were also examined by polymerase chain reaction (PCR) using primers targeting kinetoplast minicircle DNA. For infants of seropositive mothers, we collected cord blood and tissue from the umbilical cord segment proximal to the infant, and peripheral blood specimens at 7, 21, 30, 90 and 180 days of life (or until infection was diagnosed). Infant blood specimens were collected in heparinized microhematocrit tubes, centrifuged, and the Buffy coat layer examined for the presence of motile trypanomastigotes. Cord blood specimens and umbilical tissue were examined by PCR. Of 530 women, 154 (29%) had confirmed positive serology results. Infection prevalence rose by quartile of age: 18.4% (13-18 years), 24.2% (19-23 years), 29.3% (24-29 years) and 46.0% (30-45 years) (Chi square for trend 23.78, p < 0.0001). Eight infants were found to have congenital *T. cruzi* infection. Seven were diagnosed by direct examination at 7 (2), 21, 30, 90, 180 and 280 days; no cord blood specimens were positive by direct examination. One infant was diagnosed by serology at 9 months. Seven of 8 infants with confirmed congenital infection had cord blood available for PCR; 5 were positive. Umbilical tissue PCR was positive in 6 of 6 confirmed infected infants. One additional infant whose cord blood specimen was negative by direct examination had positive PCR in cord blood and tissue. Seropositive women with positive PCR were significantly more likely to transmit *T. cruzi* to their infants than those with negative PCR (8/96 PCR-positive vs 0/57 PCR-negative mothers (p < 0.05 by 2-tailed Fishers exact test). Infants were treated as soon as infection was confirmed. The rate of congenital transmission has fallen from 10% in the 1980s to 5% of infants of infected women, consistent with findings of other studies. PCR shows promise for early detection of congenital infection, and to predict which women are at highest risk to transmit *T. cruzi* to their infants.

1202

DIAGNOSTIC ACCURACY OF LEISHMANIA OLIGOC-TEST FOR THE DIAGNOSIS OF CUTANEOUS LEISHMANIASIS IN PERU

Diego Espinosa1, Andrea K. Boggild2, Stijn Deboggraeve3, Thierry Laurent4, Cristian Valencia3, César Miranda-Verástegui1, Alejandro Llanos-Cuentas1, Thierry Lecointeux4, Jean-Claude Dujardin5, Philippe Bü cher3, Jorge Arévalo1

1Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru, 2Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, 3Department of Parasitology, Instituto of Tropical Medicine, Antwerp, Belgium, 4Coris BioConcept, Gembloux, Belgium

Molecular methods, such as PCR, have become promising tools for the diagnosis of leishmaniasis, both for their high sensitivity and specificity. However, the practical utility of these techniques is limited by their infrastructural requirements and the expertise needed to conduct them. Recently, a simple and rapid dipstick method for the detection of amplified Leishmania PCR products was developed (Leishmania OligoC-Test). We estimated the diagnostic accuracy of the Leishmania OligoC-Test for diagnosis of cutaneous leishmaniasis (CL) on 61 lesions from 45 consecutive patients presenting to the Leishmaniasis Clinic of the Instituto de Medicina Tropical “Alexander von Humboldt”, Peru. Lesions were classified as (i) confirmed CL (50 cases), (ii) suspected CL (2 cases) and non CL (9 cases) based on parasitological detection and leishmanin skin test results. The sensitivity of the Leishmania OligoC-Test was 72.5% and 92% on lesion aspirates and scrapings, respectively. Furthermore, we compared the assay with a conventional PCR targeting the kinetoplast DNA (kDNA) and a significant higher sensitivity (94%) was observed with the kDNA PCR on the aspirate samples while no significant difference was observed between both methods on the scraping samples (88%). Positive PCR results were observed in the 9 non CL lesions and the role of PCR in CL diagnosis is discussed. Additionally, 4 patients were tested with the OligoC-Test in a low-equipped rural hospital laboratory located in the Peruvian central jungle. The test results were concordant to the outcome.
of the conventional diagnostic procedures but obtained only 5 hours after initial sample taking. The evaluated assay showed clear advantages as a simple and rapid molecular tool for diagnosis of CL in reference laboratories and in near-to-field hospital settings.

1203

EQUIVALENCE STUDY USING REDUCED DOSES OF ANTIMONY PLUS RECOMBINANT HUMAN GM-CSF COMPARED WITH ANTIMONY IN STANDARD DOSES FOR CUTANEOUS LEISHMANIASIS: A RANDOMIZED, DOUBLE BLIND STUDY

Roque P. Almeida1, Maria Elisa A. Rosa2, Josiane S. Carvalho2, Julia Amapuro2, Luis Henrique Guimaraes2, Paulo R. Machado2, Edgar M. Carvalho2

1Federal University of Sergipe, Aracaju-SE, Brazil, 2Federal University of Bahia, Salvador-BA, Brazil, 3Federal University of Brasilia, Brasilia-DF, Brazil

The response to recombinant human granulocyte macrophage colony stimulating factor for the treatment of cutaneous leishmaniasis was evaluated. Forty American cutaneous leishmaniasis (ACL) patients with lesions for ≤60 days were enrolled in a double-blind-randomized-placebo controlled trial. The test group included 20 patients treated with GM-CSF intralesionally injected (200µg) at enrollment, and one week after, associated with parenteral sodium meglumin antimoniate (20mg/Kg/d) for 10 days. The control group included 20 patients treated with standard antimony (20mg/Kg/d) for 20 days plus saline as placebo. EKG and AST, ALT, urea, creatinine, amylase were performed to evaluate antimony toxicity. The results show that GM-CSF applied intralesionally in conjuction to antimony in reduced time, cures cutaneous leishmaniasis patients in an equivalent time as the full regimen treatment with antimony, 91 +/- 45,69 versus 90,5 +/- 53,2 days, respectively. This study opens the possibility of reducing the treatment of ACL to 10 days which in large population samples might improve adherence to therapy. Moreover, the combined therapy will be important for patients with other conditions that increase the risk of antimony therapy, such as older patients and those with liver, heart and kidney diseases.

1204

A NOVEL AND HIGHLY POTENT CLASS OF COMPOUNDS FOR THE TREATMENT OF TRYPANOSOMIASIS

Richard C. Thompson1, Tanya Armstrong1, Wayne M. Best2, Susan Charman3, Robert Don4, Caroline Laverty1, Giuseppe Luna2, Colette Colette2

1Murdoch University, Murdoch, Australia, 2Epichem Pty Ltd, Murdoch, Australia, 3Centre for Drug Candidate Optimisation, Monash University, Melbourne, Australia, 4Drugs for Neglected Diseases Initiative, Geneva, Switzerland

It has been known for some time that trifluralin, an herbicide introduced in the 1960s, exhibits a degree of antiprotozoal activity. This compound is non-toxic and inexpensive to produce, making it a potential lead for an antiparasitic drug discovery program. We initially embarked on a project to make a range of trifluralin analogues, and in particular more water soluble analogues, in an attempt to improve the activity of this class of compound to the point where one may have potential as a commercial drug. Our most recent discovery has been what we refer to as the 3rd Generation Analogues. The compounds described are simple to synthesise and cheap to produce. The best of these compounds exhibited a 4,000-fold increase in activity compared to trifluralin. In particular, they have excellent in vitro activity against Trypanosoma rhodesiense (40 nM), T. cruzi (50 nM), and Leishmania donovani (90 nM) and cure T. rhodesiense infections in a validated mouse model when given orally. Several representatives of the class are also Ames negative. This work is being undertaken as an antiparasitic drug discovery program funded by the Drugs for Neglected Diseases initiative.
anthistamines, selective serotonin reuptake inhibitors, benzodiazepines, tricyclics, and antibiotics. The lab is currently testing combinations of these compounds (with each other and with established anti-T. cruzi inhibitors) to search for synergistic combinations. Active combinations will be studied in the murine Chagas disease model to validate the approach of using off-the-shelf compounds for combatting a neglected parasitic disease.

1207

ANTILEISHMANIAL ACTIVITY OF SELECTED FDA-APPROVED DRUGS IN A MURINE CUTANEOUS LEISHMANIASIS MODEL

David Saunders1, Qiqui Li, Carlson Misty, Lisa Xie, Qiang Zheng, Jing Zhang, Juan Mendez, John Tally, Alan Magill, Grego Max, Suping Jiang, Peter Weina

Walter Reed Army Institute of Research, Silver Spring, MD, United States

Current therapeutic options licensed in the U.S. for cutaneous leishmaniasis (CL) are extremely limited. Current intravenous therapies, such as sodium stibogluconate have considerable associated toxicities, and are suboptimal means of treating a self-limited skin disease, albeit a potentially debilitating one. Oral azoles have shown modest efficacy in limited settings. The limited local therapies available are generally suitable only for uncomplicated lesions. There is a need for a safe oral drug for CL. We recently presented a large scale effort to screen already FDA-approved drugs for in vitro activity against Leishmania major, using infected macrophages. To date 1100 drugs have been screened in vitro. We established an L. major-infected BALB/c screening model to test drugs with potent in vivo activity (IC50 less than 10 mcg/mL). Candidate drugs were first subjected to a rigorous decision matrix to determine suitability for 2-4 weeks of continuous oral therapy, favorable pharmacokinetics, and prior testing in vivo or in humans. Drug screening is currently ongoing. We will report on the results of the top 5-10 candidate drugs in the in vivo mouse model. Most of the active substances belong to categories of fungicides, antibiotics, anti-asthmatics, antiprotozoals and antidepressants. The intent of our strategy is to accelerate the process of antileishmanial drug development with reduced cost and shortened timelines.

1208

ROLE OF RED CELL COMPLEMENT REGULATORY PROTEINS IN ERYTHROPHAGOCYTOSIS DURING PLASMODIUM CHABAUDI INFECTION

Juliana V. Harris1, Catherine N. Stracener1, Xiaobo Wu2, Dirk Spitzer2, John P. Atkinson2, José A. Stoute1

1Uniformed Services University, Bethesda, MD, United States, 2Washington University, St. Louis, MO, United States

Plasmodium falciparum malaria accounts for 1-2 million deaths per year, with the majority due to complications such as severe anemia. The pathogenesis of this anemia is not completely understood and cannot be explained solely by the direct destruction of red cells by the parasite. Red cells of children with severe anemia and malaria are deficient in the complement regulatory proteins (CRPs) decay accelerating factor (DAF/CD55) and complement receptor 1 (CR1/CD35). In order to understand the significance of these deficiencies we studied the role of the mouse complement receptor 1 related protein Y (Cryy) in red cell protection during infection with P. chabaudi. We hypothesized that Cryy heterozygous knockout mice (Cryy−/−) infected with P. chabaudi would have more severe anemia than wild-type mice. There were no differences in anemia between knockout and wild-type animals due to compensatory extramedullary hematopoiesis. However, P. chabaudi-infected Cryy−/− mice showed increased erythrophagocytosis compared to wild-type animals, suggesting that complement activation is an important mechanism in this phenomenon. Erythrophagocytosis of uninfected red cells may be important in the development of anemia, as it is a common finding in tissues of malaria-infected patients and animals. Therefore, we are investigating the role of complement in erythrophagocytosis by quantitating C3 deposition on red cells using immunohistochemistry and by use of complement inhibitors to reverse erythrophagocytosis. Results of these studies will reveal potential therapeutic strategies to diminish uninfected red cell destruction during malaria infection in humans.

1209

ATP DEPLETION OF RED BLOOD CELLS Recapitulates THE PHENOTYPE ASSOCIATED WITH PYRUVATE KINASE DEFICIENCY AND PROTECTS AGAINST PLASMODIUM FALCIPARUM MALARIA

Kodjo Ayi1, Conrad W. Conrad2, Kevin C. Kain1

1Tropical Disease Unit, McLaughlin-Rotman Centre for Global Health, University of Toronto, Toronto, ON, Canada, 2Tropical Disease Unit, McLaughlin-Rotman Centre for Global Health and Molecular Medicine, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada

The protective effect of pyruvate kinase deficient (PKD) erythrocytes in Plasmodium falciparum infection has been demonstrated. There is inhibition of merozoite invasion into PKD erythrocytes, as well as increased phagocytosis of PKD erythrocytes infected with early stages of P. falciparum infection. PK deficiency arises from a number of different mutations in the PKLR gene leading to impaired enzyme activity. In agreement with previous reports, we found reduced levels of ATP in PKD homozygous erythrocytes compared to normal erythrocytes (31±14%), as well as in PKD heterozygous erythrocytes (64±7%). The inhibition of glycolysis at the level of enolase by fluoride has been used as a model system for inherited erythrocyte pyruvate kinase deficiency. Using normal erythrocytes treated with sodium fluoride at different concentrations, we show that there is a correlation between ATP levels and inhibition of parasite invasion and enhanced phagocytosis of ring-forms. We further observed increased levels of ATP in parasitized PKD erythrocytes and fluoride treated erythrocytes compared to the parasitized normal, G6PD deficient and β-thalassemia erythrocytes. These data suggest that the chemical conversion of normal erythrocytes to reduced-level-ATP erythrocytes will facilitate the investigation of the mechanism of protection of PKD erythrocytes against P. falciparum.

1210

AFM STUDY OF THE EXTRACELLULAR AND THE CYTOPLASMIC SURFACES OF PLASMODIUM FALCIPARUM INFECTED ERYTHROCYTE MEMBRANES

Hui Shi, Ang Li, Jing Yin, Kavin Tan, Chwee Teck Lim

National University of Singapore, Singapore, Singapore

Infection of human erythrocytes by the protozoan Plasmodium falciparum results in dramatic morphological and functional changes of host cells. During the process of maturation, parasites export parasite-expressed proteins, such as PfEMP1 and KfRP, to the host cell membrane thus forming knobs on the host cell surface and thereby stiffening the membrane and causing cytoadherence (cell stickiness) to occur. To investigate the formation of knobs as well as the relationship between knobs and the host cell cytoskeleton, atomic force microscopy (AFM) was used to study both the extracellular and the cytoplasmic surfaces of infected erythrocyte membranes. Although the cytoskeletal structure can be observed from both the extracellular surface and cytoplasmic surface, the AFM images of cytoplasmic surface uncovered more details of the spectrin network. Knobs and their connections or linkages to the spectrin network were clearly observed from the cytoplasmic surface of infected erythrocytes. The size and distribution of knobs viewed from the cytoplasmic surface were similar to those observed from the extracellular surface. While the spectrin network seems quite intact during the trophozoite stage, some breakages of the cytoskeleton are detected at the schizont stage. Furthermore, some internal structures such as transport vesicles, parasite-generated membrane system as well as parasites at the trophozoite stage were also imaged using AFM. Finally, numerous
super-sticky submicrometer crystals were also observed to adhere to the inner surface of the membrane at the schizont stage. This study may help to further understand the internal changes undergone by the host erythrocytes during parasite maturation.

1211
IDENTIFICATION OF A NOVEL FAMILY OF VARIANT SURFACE ANTIGENS IN PLASMODIUM FALCiPARUM
1Harvard School of Public Health, Boston, MA, United States, 2The Broad Institute of MIT and Harvard, Cambridge, MA, United States, 3Cheikh Anta Diop University, Dakar, Senegal, 4Harvard University, Cambridge, MA, United States

Plasmodium falciparum variably expressed surface antigens (VSA) have been proposed as an escape mechanism from the host immune response giving rise to persistent infections in humans. With a portion of the genome still uncharacterized, we sought a means to identify novel VSA that might play a role in pathogenesis. We hypothesized that nucleotide diversity, variant expression, and presence of the Pexel motif could be used to filter the genome into a testable set of candidate VSA. We identified over 93,000 high confidence SNPs across the genome. Most genes demonstrate low pairwise nucleotide diversity (π), with 85% of the genome having a π value less than 2.0x10^-3. To identify novel antigens, we focused on the top 5% of highly diverse genes and further evaluated the 3D7 transcriptome and a set of five patient transcriptomes to identify variably expressed genes. To discriminate genes that are exported to the surface of the infected red blood cell, we also factored the presence of the Pexel motif into our analysis. Candidates that fulfilled our filter criteria could be divided into two groups: a large number of known antigens, and a handful of uncharacterized genes. One small paralogous gene family demonstrated significantly higher nucleotide diversity than other Pexel containing genes, which is consistent with the prediction that they represent a novel family of VSAs. Steady-state transcriptome analysis indicates that these genes are expressed across different parasite lines and are generally up-regulated in vivo. To test their antigenicity, we have expressed recombinant protein from these genes and tested their reactivity with antibodies in patient plasma samples from immune patient volunteers from Senegal. Preliminary analysis shows that these proteins are variably recognized in different immune patient samples, supporting our hypothesis that they are variant antigens. We are also determining the cellular localization of these gene products. Nucleotide diversity, along with other bioinformatic parameters, represent a powerful tool for identifying novel genes involved in pathogenesis and predict new targets for vaccine development in various infectious diseases.

1212
CHARACTERIZATION OF NATURALLY ACQUIRED ANTIBODIES TO PFRh DOMAINS AND DETERMINATION OF THEIR FUNCTIONAL INHIBITORY ACTIVITY
Ambroise D. Ahouidi1, Amy K. Bei2, Ousmane Sarr3, Daouda Ndlaye7, Omar Ndri8, Dyann Wirth14, Soulyemane Mboup9, Manoj T. Duraisingham1
1Le Dantec Hospital and Cheikh Anta Diop, Dakar, Senegal, 2Harvard School of Public Health, Boston, MA, United States

Field studies conducted in malaria-endemic areas contribute to our understanding of naturally acquired immunity to malaria and also aid in identifying potential candidate molecules to select for a vaccine. The invasion of erythrocytes by Plasmodium falciparum occurs through multiple receptor-ligand interactions. Members of the PfRh protein family play a critical role in directing P. falciparum parasites to alternative receptors for invasion. These proteins localize to the merozoite surface and are exposed to the blood stream during the process of invasion; however, they remain unstudied for their contribution to the humoral immune response against Plasmodium. This study investigates whether plasma from malaria infected individuals in Senegal contains antibodies against domains within the PfRh proteins but also assesses the inhibitory activity of these antibodies with respect to invasion. Sera were collected from malaria infected patients from different areas in Senegal with different endemicities over a period of 4 years (n= 539). Total IgG to recombinant antigens representing the unique domains of the PfRh paralogs, PfRh1, PfRh2a, PfRh2b and PfRh4, were determined by ELISA. Immune reactivity in this population to PfRh2a and PfRh2b was significantly greater (40.8% and 16.1% respectively) compared to PfRh4 and PfRh1 (5.1% and 3.4% respectively). Of positive IgG responses, we have determined IgG subclass and find that IgG1 and IgG3 are predominant. We are determining associations between IgG subclass and age, parasite density, seasonally and sequence polymorphisms. We have also determined immune responses to specific C-terminal regions that distinguish PfRh2a and PfRh2b. In addition to IgG titer we also address the potential inhibitory activity of these antibodies using P. falciparum knockout strains lacking PfRh ligands. We are currently performing invasion assays using these parasite lines in the presence of purified IgG in which non-specific inhibitory factors had been removed. The presence of a humoral response to the PfRh proteins together with invasion inhibitory potential will validate these proteins as potential vaccine candidate antigens.

1213
GENOTYPIC DIFFERENCES IN PLASMODIUM FALCIPARUM FROM DIFFERENT MALARIAL DISEASE STATES IN CHILDREN FROM UGANDA
David M. Menge1, Robert O. Opoka2, Chandy C. John3
1Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, MN, United States, 2Department of Paediatrics and Child Health, Makerere University Medical School and Mulago Hospital, Kampala, Uganda, 3Global Pediatrics Program, University of Minnesota, Minneapolis, MN, United States

Plasmodium falciparum infection leads to widely different clinical conditions in children ranging from cerebral malaria (CM), severe malarial anaemia (SMA), uncomplicated malaria (UM) and asymptomatic parasitemia (AP). Studies on parasite and human genetics may help in determining the molecular basis of the diversity of clinical outcomes. We used polymorphic merozoite surface protein 1 and 2 (MSP-1 and 2) and glutamate rich protein (GLURP) DNA markers to genotype P. falciparum parasites collected from children with CM, UM and AP from Uganda. In total 94, 88 and 65 samples from children with CM, UM and AP respectively were assayed. Differences in the frequencies of parasite genotypes of P. falciparum parasites between CM, UM and AP were determined by χ2 tests. Frequencies of one or more alleles from the MSP-1 RO33 and MAD20, MSP-2 FC27 or GLURP allelic families did not differ between children with CM, UM or AP. Children with CM or UM were more likely to have one or more MSP-1 K1 alleles than children with AP (97.8 % vs 83.1 %, P = 0.002, and 98.9% vs 83.1 %, P = 0.005, respectively), but children with CM and UM did not differ in MSP-1 K1 allele frequency. Children with CM and UM were also more likely to have one or more MSP-2-3D7 alleles than children with AP (92.2% vs 75.4%, P = 0.03), but in addition, children with CM were more likely to have one or more MSP-2-3D7 alleles than children with UM (92.6% vs 80.7%, P = 0.02). These study results suggest that MSP-2-3D7 genotypes may be overrepresented in children with CM as compared to uncomplicated malaria or asymptomatic parasitemia. This may relate to functional differences conferred by this genotype or to the association of this genotype with an unrelated genetic factors. Analysis with microsatellite markers may allow further characterization of strains associated with increased disease severity. Insight into the structural and functional diversity of genes associated with virulence could reveal new strategies for intervention of malarial disease.

www.astmh.org
ABO POLYMORPHISM AND PLASMODIUM FALCIPARUM MALARIA

Kayla T. Wolofsky, Kodjo Ayi, Conrad W. Liles, Christine M. Cserti-Gazdewich, Kevin C. Kai

1McLaughlin-Rotman Centre for Global Health; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada, 2Tropical Disease Unit, McLaughlin-Rotman Centre for Global Health, University of Toronto, Toronto, ON, Canada, 3Tropical Disease Unit, McLaughlin-Rotman Centre for Global Health and Molecular Medicine; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada, 4Blood Transfusion Laboratory, Toronto General Hospital; Department of Laboratory Hematology, University of Toronto, Toronto, ON, Canada, 5Tropical Disease Unit, McLaughlin-Rotman Centre for Global Health and Molecular Medicine; Institute of Medical Science, University of Toronto, Toronto, ON, Canada

Malaria has been a major selective force on red blood cell (RBC) polymorphisms that confer protection to severe disease. Several lines of evidence suggest that the outcome of Plasmodium falciparum infection may also be influenced by ABO blood group antigens. Blood type O predominates in malaria endemic regions and has been associated with protection from developing severe and complicated malaria. Although the molecular details of protection has not been fully elucidated, previous studies have demonstrated reduced rosetting in type O RBCs. Based on observations showing enhanced phagocytosis of infected RBCs occurs with other RBC polymorphisms associated with protection, we hypothesized that infected type O RBCs may be more efficiently cleared by the innate immune clearance than type A RBCs. Here we show that primary human macrophages phagocytosed P. falciparum infected type O RBCs more avidly than infected type A RBCs (p<0.001). Furthermore, that hemichrome deposition in infected type O RBCs is significantly greater than in infected type A RBCs (p<0.05), which may account for enhanced recognition and phagocytosis of type O infected RBCs. Collectively our data suggest that type O individuals may have more proficient clearance of infected RBCs contributing to an overall decrease in parasite burden and a reduction of the number of infected erythrocytes available to bind within the microvascular beds of vital organs. This represents an additional putative mechanism by which blood type O may contribute to protection against severe malaria.

MOLECULAR CHARACTERISATION OF PYRETHROID RESISTANCE IN ANOPHELES FUNESTUS, MALARIA VECTOR IN AFRICA

Charles Wondji, John Morgan, Helen Irving, Maureen Coetzee, Hilary Ranson, Janet Hemingway

1Liverpool School of Tropical Medicine, Liverpool, United Kingdom, 2Vector Control Reference Unit, National Institute for Communicable Diseases, NHSLS, Johannesburg, South Africa

A major QTL rp1 conferring pyrethroid resistance to the malaria vector Anopheles funestus, was previously identified. Here we present a fine-scale mapping of rp1, the identification and characterisation of the genes conferring this resistance. 850 F6 and F8 individuals from reciprocal crosses between susceptible and resistant strains were genotyped with SNPs and microsatellite markers for QTL mapping. A BAC clone containing rp1 was sequenced and annotated. Quantitative PCR were carried out to study the expression pattern of the P450s genes and the in vitro interaction of the genes differentially expressed with pyrethroids was assessed. rp1 was the major QTL explaining 85% of the genetic variance to pyrethroid resistance. Two other QTLs of minor effect rp2 and rp3 were detected. Fifteen genes were identified in the 120kb BAC clone containing the rp1 QTL with a cluster of 10 P450 genes among which CYP6P9 and CYP6P4 were duplicated. These two genes were significantly differentially expressed between susceptible and resistant strains. Enzymes from these genes metabolise pyrethroid in vitro. Specific mutations associated with resistance were identified in CYP6P9 and CYP6P4. For each gene, two A/G SNPs were identified and genotyped for over 650 specimens. The G/G genotypes confer resistance at 100% and these could be used to design of a diagnostic assay to detect this metabolic resistance. In conclusion, CYP6P9 and CYP6P4 are the main genes conferring pyrethroid resistance in the laboratory strain FUMOZ-R. Further studies will be carried out to estimate their contribution in the pyrethroid resistance in field populations.

TOXICITY OF HIGHLY SELECTIVE CARBAMATES TOWARDS THE MALARIA MOSQUITO, ANOPHELES GAMBIAE

James M. Mutunga, Troy D. Anderson, Bryan T. Jackson, Joshua A. Hartsel, Sally L. Paulson, Paul R. Carlier, Jeffrey R. Bloomquist

Virginia Tech, Blacksburg, VA, United States

Insecticide-treated bednets (ITNs) are an important tool for the management of Anopheles gambiae, the major vector of malaria in Africa. Pyrethroids are the only insecticides approved for bednet treatments; however, widespread resistance and lack of alternative chemicals undermine the use of ITNs for mosquito control. Our research focus is to develop highly selective insecticides with high mosquito toxicity and low mammalian toxicity that might be used in parallel with current-use pyrethroids. We report the re-engineering of carbamate insecticides to increase selectivity and mitigate resistance development in An. gambiae. Based on mosquito acetylcholinesterase (AChE) protein homology modeling, we have synthesized new carbamates that are highly selective to An. gambiae AChE. Anticholinesterase activities of each carbamate were evaluated for both human and mosquito AChEs and compared to those of propoxur (WHO standard for mosquito control), and other conventional carbamate insecticides. We demonstrate novel carbamates of greater selectivity (ca. > 8000-fold) towards An. gambiae AChE, compared to 3-fold selectivity with propoxur. The new carbamates have increased potency towards mosquitoes (ca. 60-fold) than that of propoxur. We confirm both intrinsic and contact mosquito toxicity of these carbamates and demonstrate comparable toxicities to that of propoxur, and other conventional carbamates. With such high levels of selectivity, potency and toxicity, these novel carbamates provide valuable leads to developing of alternative mosquitocides for use in insecticide treated bednets and indoor residual sprays. Our findings are important in the search for new mosquito selective-insecticides and the possible use of these carbamates in malaria control programs will be discussed.

COMBINING ORGANOPHOSPHATES AND REPELLENTS ON FABRICS: A PROMISING STRATEGY TO BETTER CONTROL PYRETHROID RESISTANT MOSQUITOES

Cédric Pennetier, Costantini Carlo, Chabi Joseph, Dabiré Rock, Corbel Vincent, Lapedis Bruno, Pagès Frédéric, Hougard Jean-Marc

1Institut de Recherche pour le Développement, Montpellier, France, 2Institut de Recherche pour le Développement, Bobo-Dioulasso, Burkina Faso, 3Institut de Recherche pour le Développement, Cotonou, Benin, 4Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso, 5Université d’Angers, Angers, France, 6Institut de Médecine Tropicale du service de Santé des Armées, Marseille, France

With the spread of pyrethroid resistance in most mosquito vector species and the lack of alternative compounds for public health, the search for new strategies that provide better control of resistant populations has become a priority. A new concept was developed in the laboratory by mixing repellents and non pyrethroid insecticides. Here, this concept was studied for personal and community protection under field conditions in Benin and Burkina Faso, West Africa. Indeed we studied the efficacy of battle-dress and bed nets impregnated with organophosphate(PM)/repellent(DEET or KBR) mixtures, respectively against Aedes aegypti, the main dengue and yellow fever vector and Anopheles gambiae, the main
malaria vector, First, KBR and PM+KBR impregnated battle-dress allowed better protection against Ae. aegypti bites than permethrin impregnated battle-dress. Secondly, results showed evidence of synergism between repellents (DEET or KBR) and pyrimiphos-methyl (PM) on nets in field conditions. PM+DEET and PM+KBR treated nets were as effective as a standard pyrethroid (deltamethrin 25mg/m²) against susceptible An. gambiae populations and more effective against resistant An. gambiae populations. Results also demonstrated that mixtures did select neither Kdr allele nor Ace1° allele. In conclusion, these field trials showed that mixing repellents and organophosphates has the potential to be a good alternative strategy to manage the spread of resistance. However, significant improvements remain to be done to improve residual effect of Insecticide-Repellent Treated fabrics.

1218

DEVELOPMENT OF A NOVEL FORMULATION FOR USE IN INDOOR RESIDUAL SPRAY PROGRAMS

John R. Lucas¹, Takaaki Itoh², Yoshinori Shono³, Luc Djogbénoù⁴, Jean-Marc Hougard⁵

¹Sumitomo Chemical Co. (UK) Plc, London, United Kingdom, ²Sumitomo Chemical Co., Ltd., Environmental Health Division, Tokyo, Japan, ³Centre de Recherches Entomologiques de Cotonou (CREC), Cotonou, Benin

Fenitrothion wettable powder (WP) is recommended by the World Health Organization (WHO) for Indoor Residual Spraying (IRS) against malaria vectors. However, with the increase in the use of Long Lasting Insecticidal Nets (LLINs) as a low cost and highly effective intervention, IRS has more recently been used in many parts of Africa as a secondary treatment option, or for use in epidemic zones. In some instances, particularly in highly malarious areas, the use of LLINs and IRS together can give very dramatic reductions in incidence. With the focus now turning towards the elimination or eradication rather than control of malaria, the combination of several vector control interventions combined with the administration of effective anti-malarial drugs will become the norm as countries step up their efforts to eliminate this parasite. There is an increasing concern over the development of resistance to pyrethroids, possibly affecting LLIN performance, which are currently all dependent on this insecticide class. To minimize selection pressure the use of pyrethroid-based IRS products is not recommended with LLIN applications. Alternatives to the widespread use of pyrethroids are currently all dependent on this insecticide class. To minimize selection pressure the use of pyrethroid-based IRS products is not recommended with LLIN applications. Alternatives to the widespread use of pyrethroids are currently all dependent on this insecticide class. To minimize selection pressure the use of pyrethroid-based IRS products is not recommended with LLIN applications. Alternatives to the widespread use of pyrethroids are currently all dependent on this insecticide class. To minimize selection pressure the use of pyrethroid-based IRS products is not recommended with LLIN applications. Alternatives to the widespread use of pyrethroids are currently all dependent on this insecticide class. To minimize selection pressure the use of pyrethroid-based IRS products is not recommended with LLIN applications. Alternatives to the widespread use of pyrethroids are currently all dependent on this insecticide class. To minimize selection pressure the use of pyrethroid-based IRS products is not recommended with LLIN applications. Alternatives to the widespread use of pyrethroids are currently all dependent on this insecticide class. To minimize selection pressure the use of pyrethroid-based IRS products is not recommended with LLIN applications. Alternatives to the widespread use of pyrethroids are currently all dependent on this insecticide class. To minimize selection pressure the use of pyrethroid-based IRS products is not recommended with LLIN applications. Alternatives to the widespread use of pyrethroids are currently all dependent on this insecticide class. To minimize selection pressure the use of pyrethroid-based IRS products is not recommended with LLIN applications. Alternatives to the widespread use of pyrethroids are currently all dependent on this insecticide class. To minimize selection pressure the use of pyrethroid-based IRS products is not recommended with LLIN applications. Alternatives to the widespread use of pyrethroids are currently all dependent on this insecticide class. To minimize selection pressure the use of pyrethroid-based IRS products is not recommended with LLIN applications. Alternatives to the widespread use of pyrethroids are currently all dependent on this insecticide class. To minimize selection pressure the use of pyrethroid-based IRS products is not recommended with LLIN applications. Alternatives to the widespread use of pyrethroids are currently all dependent on this insecticide class. To minimize selection pressure the use of pyrethroid-based IRS products is not recommended with LLIN applications. Alternatives to the widespread use of pyrethroids are currently all dependent on this insecticide class. To minimize selection pressure the use of pyrethroid-based IRS products is not recommended with LLIN applications. Alternatives to the widespread use of pyrethroids are currently all dependent on this insecticide class. To minimize selection pressure the use of pyrethroid-based IRS products is not recommended with LLIN applications. Alternatives to the widespread use of pyrethroids are currently all dependent on this insecticide class. To minimize selection pressure the use of pyrethroid-based IRS products is not recommended with LLIN applications. Alternatives to the widespread use of pyrethroids are currently all dependent on this insecticide class. To minimize selection pressure the use of pyrethroid-based IRS products is not recommended with LLIN applications. Alternatives to the widespread use of pyrethroids are currently all dependent on this insecticide class.

1219

HUMAN ANTIBODY RESPONSE TO ANOPHELES GAMBIAE SALIVA: A NEW IMMUNO-EPIDEMIOLOGICAL MARKER TO EVALUATE THE EFFECTIVENESS OF INSECTICIDES TREATED NETS (ITNs)?

Papa Makhtar Drame¹, Anne Poinsignon², Patrick Besnard³, Sylvie Cornélie⁴, Vincent Foumane⁴, Cheikh Saya Sow⁴, Jacques Le Mire⁵, Filomena Fortes⁶, Denis Boulanger⁷, Pierre Carnevale⁸, Francois Simondon⁹, Franck Remoué¹

¹Institut de Recherche pour le Développement, Dakar, Senegal, ²Institut de Recherche pour le Développement, Montpellier, France, ³Service Médical Sonamet, Lobito, Angola, ⁴Organisation de Coordination pour la lutte contre les Étendues en Afrique Centrale (OCEAC), Yaoundé, Cameroon, ⁵Service Médical Clinique Sonamet, Lobito, Angola, ⁶Malaria Control Program, Luanda, Angola

In a way to improve malaria control, many efforts are conducted under WHO recommendations to develop new tool/indicator for malaria control, such as for evaluating the anti-vector strategies. Previous studies have shown that the evaluation of human antibody (Ab) response to arthropod salivary proteins represent an epidemiological indicator of exposure to vector bites, and especially our team demonstrated that IgG response to whole saliva of Anopheles gambiae in exposed individuals represent a marker of the intensity of Anopheles exposure. The objective of the present study was to validate whether this immunological marker based on human anti-saliva IgG Ab levels could be one new indicator to evaluate the effectiveness of ITNs use in malaria control programs. One longitudinal study, concerning individuals (n=108, children and adults) living in malaria endemic area in Angola, was performed from March 2005 to October 2006. The studied cohort was followed for parasitological, clinical, entomological and immunological data, each 6 weeks before and after the well-controlled use of Permanet® mosquito nets (Long Lasting Insecticide Net; installation in Feb. 2006). Seasonal variations of anti-saliva IgG Ab levels to An. gambiae saliva were observed before and after the installation of ITNs which appeared to be associated with the exposure to An. gambiae (evaluated by the classical entomological methods) and the prevalence/intensity of malaria infection. Moreover, a significant decrease of the anti-saliva IgG response was observed after the ITNs use which was correlated with the decrease of malaria parasitemia, the current and referent criteria showing the effectiveness of these ITNs. In a way to identify new tools for malaria control, we have shown that anti-saliva IgG response in exposed individuals could be not only an immunological epidemiological marker of exposure to An. gambiae bites, but also a potential indicator for evaluating the ITNs effectiveness. Several future studies are needed to confirm this hypothesis in other transmission areas and to identify some immunogenic salivary proteins as higher specific markers. Nevertheless, this study represents a first approach to elaborate such new indicators for evaluating the effectiveness of anti-vector strategies, based on the evaluation of human Ab response to salivary proteins of arthropod vectors.

1220

EFFECTIC OF INSECTICIDE TREATED MATERIALS (ITMS) FOR DENGUE CONTROL IN LATIN AMERICA AND ASIA: CLUSTER RANDOMIZED CONTROLLED TRIALS IN VENEZUELA AND THAILAND

Audrey Lenhart¹, Eli Villegas², Carmen Elena Castillo³, Yuwadee Trongtokit⁴, Chamnarn Apiwathnasorn⁵, Neal Alexander⁶, Philip J. McCall⁷

¹Liverpool School of Tropical Medicine, Liverpool, United Kingdom, ²Universidad de los Andes, Trujillo, Venezuela, ³Mahidol University, Bangkok, Thailand, ⁴London School of Hygiene and Tropical Medicine, London, United Kingdom

Dengue fever is the fastest spreading arboviral disease worldwide. In the absence of a vaccine, Aedes aegypti vector control remains the most effective strategy to prevent dengue transmission. Our initial studies in Latin America indicated that insecticide treated materials (ITMs) can impact on dengue vector populations and potentially on dengue virus transmission. Cluster randomized trials are underway in Venezuela (6000 households in 75 clusters) and Thailand (2000 households in 26 clusters) to further clarify the efficacy of ITMs in suppressing dengue vector populations. These trials incorporate several advances on the earlier studies: first, different types of ITMs are being tested alone and in combination and householders may choose the manner of deployment; secondly, spill-over effects of the interventions into neighboring control areas are monitored by including external control sites; thirdly, efficacy of ITMs for dengue vector control is measured on a large scale for the first time in SE Asia. Both study sites had high entomological indices at baseline (Venezuela average pupae per person index = 0.52, average Breteau index = 15.3; Thailand average pupae per person index = 0.22, average Breteau index = 22.4), and the ITM interventions were adopted and maintained by the population in both sites to a similar extent, although their manner of deployment varied (Venezuela: window curtains and jar covers; Thailand: indoor and window curtains). Although the trials are set to complete in early 2009, preliminary data and analyses will be presented and important
REDUCED EFFICACY OF PYRETHROID SPACE SPRAYS FOR DENGUE CONTROL IN PYRETHROID RESISTANCE AREA (MARTINIQUE)

Sebastien Marcombe¹, Alexandre Carron², Frédéric Darriet¹, Manuel Etienne Etienne³, Michel Tolosa Tolosa², Marie-Michèle Yp-Tcha³, Christophe Lagneau¹, André Yébakima³, Vincent Corbel¹

1Institut de Recherche pour le Développement, Montpellier, France, 2Entente Interdépartementale pour la Démoustication du littoral méditerranéen (EID Méditerranée), Montpellier, France, 3Centre de Démoustication, Fort de France, Martinique

The last 30 years saw a dramatic resurgence of several infectious diseases like Dengue fever and Chikungunya causing major public health problems. Unfortunately, vector control remains extremely difficult to implement because it requires a large budget, skilled staff, commitment, and active community participation. To reduce the infection rate during epidemics, space spraying is the only solution for adult mosquito control. In the Caribbean, insecticide resistance is widely developed in Aedes aegypti and may represent a serious obstacle for dengue vector control. In this context, the efficacy of pyrethroid and organophosphate ULV-space sprays was investigated in Martinique (French West Indies) where Aedes aegypti previously shown to be resistant to conventional insecticides. WHO cylinder tests showed high level of resistance of a wild-field caught population of Aedes aegypti to deltamethrin (RR95 = 68) and, in a lesser population of WHO cylinder tests showed high level of resistance of a wild-field caught infected with Dengue fever and Chikungunya causing major public health problems. Unfortunately, vector control remains extremely difficult to implement because it requires a large budget, skilled staff, commitment, and active community participation. To reduce the infection rate during epidemics, space spraying is the only solution for adult mosquito control. In the Caribbean, insecticide resistance is widely developed in Aedes aegypti and may represent a serious obstacle for dengue vector control. In this context, the efficacy of pyrethroid and organophosphate ULV-space sprays was investigated in Martinique (French West Indies) where Aedes aegypti previously shown to be resistant to conventional insecticides. WHO cylinder tests showed high level of resistance of a wild-field caught population of Aedes aegypti to deltamethrin (RR95 = 68) and, in a lesser extend, to pyrethrum (RR95 = 14) and naled (RR95 = 12) compared to the susceptible reference strain. A simulated field trial implemented in this locality showed that this resistance can strongly reduce the knockdown effect and mortality of deltamethrin (1 g/ha) and synergized pyrethrins (10 g/ha) applied by thermal fogging. The mortality rates of all pyrethroids were below 60% at 20 m and then dropped below 30% at 30 m. Conversely, the efficacy of naled (114 g/ha) was high against both susceptible and resistant mosquitoes, i.e. mortality and KD effect were above 75% until 50 m. This finding has important implications for dengue vector control and emphasizes the need to develop innovative tools and strategies to maintain effective control of multi resistant Aedes aegypti populations.

FATAL OUTBREAK FROM CONSUMING XANTHIUM STRUMARIUM SEEDLINGS DURING TIME OF FOOD SCARCITY IN NORTHEASTERN BANGLADESH

Emily S. Gurley¹, Mahmudur Rahman², M. Jahangir Hossain¹, Nazmun Nahar¹, Be-Nazir Ahmed¹, Rebeca Sultana², Selina Khatun², M. Sabbir Haider¹, M. Saiful Islam¹, Upal K. Mondal¹, Stephen P. Luby¹

1International Center for Diarrhoeal Disease Research, B, Dhaka, Bangladesh, 2ICEDCR, Ministry of Health and Family Welfare, Dhaka, Bangladesh

In November 2007 a cluster of deaths was identified at a government hospital in northeastern Bangladesh. Patients presented with unconsciousness, elevated liver enzymes, and a history of repeated vomiting and restlessness. We investigated this outbreak in order to describe the clinical syndrome and determine etiology and risk factors for disease. We defined suspect cases as those experiencing vomiting and probable cases as vomiting and altered mental status in the outbreak areas from 2 to 11 November. We identified cases at hospitals and by house-to-house visits. In-depth interviews detailed illness histories and generated hypotheses about the etiology of disease. We conducted a cohort study in two villages to investigate risk factors for developing vomiting and unconsciousness, with a focus on foods consumed. In total, 81 patients were identified from 11 villages; 24% (19/81) died. Cases residing in remote areas and were poor; many villagers reported eating only two meals per day. In-depth interviews with 33 cases showed that 31 (94%) had consumed ghagra shak, or cocklebur (Xanthium strumarium) in the hours before illness onset. Mature ghagra shak plants are usually consumed in these villages in small amounts to flavor foods or for medicinal purposes. However, due to severe and late flooding in 2007, villagers relied more upon uncultivated foods such as ghagra shak, and consumed very young plants. Persons who ate this plant were 28.9 (95% CI 9.2 to 90.8, P < 0.001) times more likely than others to develop vomiting and unconsciousness during the outbreak. Consuming X. strumarium has caused similar illness and death in livestock and children in other parts of the world. The toxic agent in the plant is carboxytragallose, which is found in the seeds and seedlings. Messages advising against consuming seedlings should be communicated broadly across the country and communities at risk for food scarcity should be targeted for food relief. This outbreak provides further example of how poverty and the lack of food security imperils lives.

EFFECT OF READY-TO-USE-THERAPEUTIC FOOD SUPPLEMENTATION ON THE NUTRITIONAL STATUS, MORTALITY AND MORBIDITY OF CHILDREN 6 TO 60 MONTHS IN NIGER: A CLUSTER RANDOMIZED TRIAL

Sheila Isanaka¹, Nohelly Nombella², Ali Djibo³, Marie Poupard², Dominique Van Beckhoven², Valerie Gaboulaud², Philippe J. Guerin², Rebecca F. Grais²

1Departments of Epidemiology and Nutrition, Harvard School of Public Health, Boston, MA, United States, 2Epicentre, Paris, France, 3Ministry of Health, Niamey, Niger

Ready-to-use-therapeutic foods (RUTF) are becoming an important component of the effective outpatient treatment of severe wasting. Their utility for prevention of wasting, however, has not been evaluated. Further, some findings of adverse health effects due to iron and folic acid supplementation suggest that iron supplementation in settings where the prevalence of malaria and other infectious diseases is high should be proceeded with cautiously. We evaluate the effect of a 3-month preventative supplementary feeding using RUTF on the nutritional status, mortality and morbidity of children 6 to 60 months. A cluster randomized trial of 12 villages in Maradi, Niger. Six villages were randomized to intervention and 6 to no intervention. Villages were visited monthly from August 2006 to March 2007. All children in the study villages between 6 and 60 mo of age were eligible for recruitment. The monthly distribution consisted of one packet per day of RUTF (PlumpyNut®, 500kcal/day) to each eligible child with weight-for-height ≥ 80% of the NCHS reference median from August to October 2006. Our main outcome was change in weight-for-height Z (WHZ) score according to the WHO Standards and incidence of wasting (WHZ < -2) over 8 months of follow up. The adjusted overall effect of the intervention on WHZ change was 0.18 Z (95% CI: 0.09, 0.27) over 8 mo. This effect was strongest in children 24 mo or younger at baseline. The intervention resulted in a 36% (95% CI: 20% - 49%) reduction in the incidence of wasting and a 57% (95% CI: 43% - 68%) reduction in the incidence of severe wasting. There was no evidence of increased risk of malaria associated with RUTF supplementation. There was a non-significant 49% reduction in mortality associated with the intervention. In conclusion, in a setting of acute food insecurity, short-term preventative supplementation with RUTF reduced the decline in WHZ and incidence of wasting and severe wasting. This study suggests that this product fortified with 11.5 mg of iron/100g did not aggravate malaria but further research is needed.
PATHOGENESIS OF HAEMORRHAGE ASSOCIATED WITH DENGUE INFECTION IN ADULTS IN VIETNAM

Dinh The Trung1, Tran Thanh Hien2, Le Thi Thu Thao2, Nguyen Minh Dung2, Tran Van Ngo2, Robert Goldin3, Edward Tuddenham4, Cameron Simmons5, Jeremy Farrar3, Bridget Wills5
1University of Medicine and Pharmacy of Ho Chi Minh City, Ho Chi Minh city, Vietnam, 2Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam, 3Department of Investigative Sciences, Imperial College, London, United Kingdom, 4Katherine Dormandy Haemophilia Centre and Thrombosis Unit University College, London, United Kingdom, 5Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam

The number of adults with severe dengue disease continues to increase in South-East Asia, as well as in South Asia and Latin American countries. Bleeding manifestations and severe liver involvement appear to be more common in adults than in children and may cause death. To date the pathogenesis of bleeding in dengue infections remains poorly understood, and there is little formal data comparing adult and paediatric patterns of disease. We present data from a prospective study of more than 600 adults representing the full spectrum of dengue disease admitted to a single hospital in Vietnam in 2006-7. Clinical and basic laboratory features will be described, with particular reference to bleeding manifestations and coagulation tests/platelet abnormalities, documented carefully throughout the evolution of the disease, and compared with similar observations from a group of children admitted to the hospital during the same dengue season. In addition to thrombocytopenia, an increase in activated partial thromboplastin time (APTT) and a reduction in fibrinogen levels were the two most consistent abnormalities detected, although typical DIC was unusual. Heparan sulfate (HS), a major constituent of the endothelial surface glyocalyx layer that is a known receptor for the dengue virus, is closely related to the therapeutic anticoagulant agent, heparin, and could function in a similar way to increase the APTT if released into the circulation. HS levels were measured in a subgroup of 200 of the adult dengue patients, and found to be markedly elevated; we will present data correlating HS levels with clinical severity and with the APTT derangement in support of this hypothesis. Secondly in vivo mammalian studies of intrinsic permeability indicate that despite its large size fibrinogen leaks from the microvasculature at a similar rate to the much smaller albumin in intrinsic permeability indicate that despite its large size fibrinogen leaks from the microvasculature at a similar rate to the much smaller albumin in vivo. Albumin leakage increases dramatically in patients with dengue shock syndrome. Using immuno-histochemistry we demonstrate interstitial leakage of fibrinogen in a series of 15 skin biopsies taken from among in vivo. Albumin leakage increases dramatically in patients with dengue shock syndrome. Using immuno-histochemistry we demonstrate interstitial leakage of fibrinogen in a series of 15 skin biopsies taken from among

IMPACT OF MASS AZITHROMYCIN TREATMENT ON THE PREVALENCE OF ACTIVE TRACHOMA AND OCULAR CHLAMYDIA TRACHOMATIS IN THE GAMBIA

Emma Harding-Esch1, Martin J. Holland1, Ansumana Sillah1, Sandra Molina3, Aura Aguirre-Andresen1, Paul Snell2, Tansy Edwards3, Robin L. Bailey4, David C. Mabey1
1London School of Hygiene and Tropical Medicine, London, United Kingdom, 2National Eye Care Programme, Banjul, Gambia, 3Medical Research Council Laboratories, Fajara, Gambia

Trachoma, caused by ocular serovars of Chlamydia trachomatis (CT), is the leading infectious cause of blindness. Antibiotic treatment is part of the WHO control strategy and The Gambia has qualified for a donation of azithromycin by Pfizer. We report the prevalence of active trachoma and ocular CT before and one year after mass azithromycin treatment in The Gambia. At both baseline and follow-up, children aged 0-9 years in 6 villages were screened for trachoma clinical signs according to the WHO simplified grading system. Ocular specimens were taken from each child’s right eye and processed by Amplicor PCR for the second-collected swab of baseline samples, and the first-collected swab of follow-up samples.

Mass treatment was conducted after baseline screening. At baseline 280/1171 children (23.9%) had active trachoma and 35 (3.0%) were PCR positive. At follow-up 207/1175 children (17.6%) had active trachoma and 45 (3.8%) were PCR positive. After treatment the prevalence of active trachoma decreased in all villages although in one village the difference was insignificant (p=0.952). There was no evidence of CT infection in 2 villages at follow-up, and only one PCR positive case in 2 other villages. However, 2 villages had higher CT prevalence at follow-up than at baseline. WHO policy is to mass treat annually for 3 years any community where the prevalence of active trachoma in children aged 1-9 years is ≥10%. At baseline, all 6 villages qualified for mass treatment and at follow-up all but one village still had ≥10% prevalence. However, CT prevalence was low indicating that these villages may be unnecessarily receiving treatment, thus wasting scarce resources. The higher CT prevalence at follow-up than at baseline may be explained by low treatment coverage (51.0%) in one village, but not in the other (93.6%). Another explanation is that of cross-border re-infection from Senegal, as has previously been reported. Antibiotic treatment should therefore be conducted over a wide geographical area to limit re-infection from occurring. Investment in the long-term “F” and “E” components of the SAFE strategy is also important if trachoma elimination is to be maintained in The Gambia.

EXTRA-HEPATIC CYSTIC HYDATID DISEASE: A DIAGNOSTIC DILEMMA?

Parsotam R. Hira1, Faiza Al-Al1, Fathma A. Al-Shelahi2, Nabila Khalid1, Nadia A. Al-Enezy1, Santosh Hrabbar4, Deena Al-Rifaai1, Mehraj Sheikh1
1Department of Microbiology, Faculty of Medicine, Kuwait City, Kuwait, 2Department of Laboratories, Farwaniya Hospital, Kuwait City, Kuwait, 3Department of Laboratories, Mubarak Al-Kabeer Hospital, Kuwait City, Kuwait, 4Department of Radiology, Farwaniya Hospital, Kuwait City, Kuwait, 5Department of Radiology, Faculty of Medicine, Kuwait City, Kuwait

Cystic hydatid disease (CHD), a zoonosis due to the metacestode of the canine tapeworm Echinococcus granulosus is endemic in parts of the sheep-rearing areas of the Middle East, including Kuwait. CHD of the liver, with the presenting triad of symptoms of abdominal pain, a palpable mass and jaundice is well documented. However, man being an aberrant host, a variable proportion of the cysts develop extra-hepatically giving rise to non-specific symptoms, resulting in delayed or misdiagnosis. The magnitude of the problem of extra-hepatic cysts, and the consequent difficulties in diagnosis has yet to be defined and may be an underestimate in endemic countries, including Kuwait. We first describe patients presenting with extra-hepatic CHD to show the variety of unusual presentations and the difficulties in laboratory diagnosis. We discuss such cysts in the lung in a Saudi female, in the posterior triangle of the neck in a female Kuwaiti and in the breast in another; in the brain and heart in a Syrian male and in the pelvis in a Bangladeshi male. The diagnosis in each was confirmed by serology, presence of scolices and hooks after nucleic acid amplification fluid and/or histopathology of sectioned cysts. We then show that of a total of 1201 patients, CHD was diagnosed in 198 (16.5%); 155 (78.3%) had cysts in the liver but in 39 (19.7%) they were extra-hepatic. In four patients (2%), cysts were both in the liver and extra-hepatic too. The number of patients with extra-hepatic cysts will vary in each endemic zone depending on the phenotypic and genotypic variability of the parasite. The G1 strain involving dogs/sheep rather than camels/sheep is predominant in this endemic area influencing the site of location of hydatid cysts in man. We elaborate on the mode of transmission which also influences the target organ in each geographic area. Indeed our data may not reflect the true magnitude of the problem as a whole body scan was not performed either on those with hepatic or extra-hepatic cyst. Even with the advent of imaging studies, the availability of serology and the increased use of fine-needle aspiration cytology, we...
show that diagnosis of extra-hepatic CHD is fraught with difficulties. Such data are essential for the attending physician to make an informed judgment and to differentiate CHD from masses like tumours, congenital, simple and other cystic lesions which we encountered and enumerate in our extensive list from this geographic locale.

1227

SEROPREVALENCE OF STRONGYLOIDES IN NEWLY ARRIVED IMMIGRANTS AND REFUGEES

Christina A. Greenaway1, J. Dick MacLean2, Brian J. Ward3, Momar Ndao4
1SMBD Jewish General Hospital, Montreal, QC, Canada, 2McGill University Centre for Tropical Diseases, Montreal, QC, Canada, 3National Reference Centre for Parasitology, Montreal, QC, Canada

Strongyloides stercoralis is an intestinal parasite that is highly endemic in tropical countries with reported seroprevalence ranging in immigrants from 1-75% depending on their country of origin, immigration class, and the diagnostic method used. A large proportion of newly arrived immigrants and refugees may be asymptomatically infected with strongyloides for life. Such chronic infections put these individuals at risk for disseminated disease (associated with high mortality) and that could be prevented through targeted screening or empiric treatment programs. A total of 1294 foreign-born adults (≥18 years), having lived ≤5 years in Canada were recruited from 2 hospitals and 3 clinics in Montreal, between October 2002 and December 2004. Socio-demographic information was collected via a questionnaire. Antibodies to recombinant Strongyloides stercoralis NIE antigen [Optical density (OD) <0.35=negative, ≥0.35-0.45=low positive, >0.45-0.75=moderately positive, >0.75=high positive] and antibodies to Brugia malayi antigen (OD <0.3=negative, ≥0.3-0.4=low positive, >0.4-0.7=moderately positive, >0.7=high positive) were detected by ELISA. The mean age was 33 ± 8.8 years (range 18-76), 66% were female, 49% were refugee or refugee claimants and 47% had a university degree. A large portion of the patient population had antibodies to strongyloides 27% (95% CI, 22-32%) and ranged in 6 different geographic regions from 17%-41%. A total of 11% (146/1294) of the study population had positive filaria serology and 19% (677/350) of all patients with positive strongyloides serology also had positive filaria serology, suggesting some cross reactivity and/or dual infection. In preliminary multivariate analysis, positive strongyloides serology was more common in men than women [OR, 95% CI: 1.8, (1.2-2.1)], in refugees vs immigrants [1.4 (1.01-1.9)], in those with moderately positive filaria serology [3.3 (1.9-5.7)], or high positive filaria serology [2.4 (1.01-5.5)] vs those with negative serology, and within several world regions after adjusting for the variables noted above as well as age and several socioeconomic factors. In conclusion, a large proportion of adult immigrants and refugees in the Montreal area are infected with strongyloides and are at risk for disseminated disease. These individuals would likely benefit from targeted screening programs and or empiric treatment.

1228

PHENOTYPIC AND GENOTYPIC EVIDENCE OF EMERGING IVERVERMECTIN RESISTANCE IN ONCHOCERCIASIS

Mike Y. Osei-Atweneboana1, Simon K. Atta2, Kwablah Awadzi3, Daniel A. Boakye2, John O. Gyapong3, Roger K. Prichard1
1McGill University, Ste. Anne-De-Bellevue, QC, Canada, 2Onchocerciasis Chemotherapy Research Center, Hohoe, Ghana, 3Onchocerciasis Chemotherapy Research Center, Hohoe, Ghana, 4Noguchi Memorial Institute for Medical Research, Accra, Ghana, 5Health Research Center, Ghana Health Services, Accra, Ghana

Onchocerciasis, commonly known as “River blindness” is a disease affecting over 37 million people, primarily in Africa. Ivermectin, the only drug for mass treatment is showing reduce efficacy to adult Onchocerca volvulus, the causative agent of the disease. We have carried out a 21 month longitudinal study, on 301 subjects from 10 Ghanaian communities that have received between 7-20 rounds of IVM treatment, to assess the microfilaricidal effect of ivermectin and its impact on adult female worm reproductive status. Nodulectomies were carried out on 140 subjects three months after the last IVM treatment. Embryograms were constructed on all intact female worms. We observed significant differences in these communities in terms of worm burdens, female worm production of various embryonic stages and production of intra-uterine stretched mf. From this data, we have classified communities into three responses group. Three communities showed poor response, two were moderate responders and five communities, including a previously IVM naïve community, were good responders. B tubulin isotype 1 gene has been shown to be linked to IVM selection in O. volvulus and also associated with IVM resistance in veterinary nematodes. We have genotyped the full length genomic DNA for β-tubulin of 284 O. volvulus adult worms obtained from all response groups. We observed single nucleotide polymorphisms (SNPs) at 21 sites on the entire 3696 bp gene. Of these, seven occurred in exons, one translating into an amino acid change, while 14 occurred in introns; of particular interest were the changes in the first intron. We observed significance differences (P<0.03) between the three response groups at five SNPs occurring in both exons and introns. The phenotypic and genotypic evidence indicates that IVM resistance is being selected and is manifested as a loss of effect of IVM on suppression of parasite reproduction. B-tubulin may be a useful genetic marker for the selection of IVM resistance.

CO-CULTURE WITH PLASMODIUM FALCIPARUM-INFECTED RED BLOOD CELLS INDUCES DIFFERENTIATION OF FUNCTIONALLY COMPETENT REGULATORY T CELLS FROM LYMPHOCYTES OF MALARIA-NAÏVE DONORS

Olivia Finney1, Emma Lawrence2, Judith Satoguina3, David Conway4, Eleanor Riley1, Michael Walter5
1LSHTM, London, United Kingdom, 2Manchester University, Manchester, United Kingdom, 3MRC, Banjul, Gambia

An important aspect of clinical immunity to malaria is the ability to down-regulate inflammatory responses once parasitaemia is under control, in order to avoid host-mediated pathology. Previously, we found that regulatory T cells (Tregs) are upregulated in response to sporozoite challenge in malaria naïve volunteers, leading to reduced pro-inflammatory responses and enhanced parasite growth. More recently we found that natural exposure to malaria may induce a transient increase in the number of functional Tregs: increased percentages and absolute numbers of CD4+Foxp3+CD127low T cells were found in individuals living in a rural village with stable malaria transmission than in individuals living in an urban area where malaria rarely occurs. Moreover, in the same rural population, levels of FOXP3 mRNA were higher at the end of the malaria transmission season than at the end of the dry season 6 months later. In the present study we demonstrated that functionally active Tregs can be induced in vitro, in a dose dependent manner, by co-culture with P. falciparum schizont extract or viable parasitized red blood cells. Depletion of CD25+ T cells prior to co-culture abrogates this effect suggesting either that natural Tregs are the precursors of the induced population or that their presence is required for induction to take place. Tregs express very high levels of Fas (CD95), and low levels of Bcl2 both ex-vivo and after induction in vitro, suggesting they are prone to undergo apoptosis. This would explain the transient increase in this population observed in vivo after exposure to malaria. Ongoing studies addressing the role of apoptosis in the fate of malaria-induced Tregs in vitro will be presented.
FUNCTIONAL RELATIONSHIP BETWEEN IL-1β PROMOTER HAPLOTYPES (-31C/T AND -511A/G) AND PEDIATRIC SEVERE MALARIAL ANEMIA

Collins Ouma1, Tom Were1, Greg Davenport2, Christopher Keller3, Samuel Anyona1, Henry Ndege1, Michael Otieno1, John Vulule1, Jeremy Martinson2, Robert Ferrell2, John Michael Ong’echa1, Douglas Perkins6

1University of New Mexico/KEMRI, Kisian, Kenya, 2University of Pittsburgh, Pittsburgh, PA, United States, 3Lake Erie College of Osteopathic Medicine, Erie, PA, United States, 4Kenyatta University, Nairobi, Kenya, 5KEMRI, Kisian, Kenya, 6University of New Mexico, Albuquerque, NM, United States

Interleukin (IL-1) is an important inflammatory mediator in Plasmodium falciparum infections. Although the inflammatory profile associated with protection against severe malarial anemia (SMA) is largely undefined, increased IL-1β production appears to limit parasitemia. Previous studies showed associations between individual IL-1β promoter variants (-31C/T and -511A/G) and malaria disease severity. To further examine the role of IL-1β promoter variants in conditioning malaria disease outcomes, the relationship between -31C/T and -511A/G haplotypes, SMA (Hb<6.0g/dL), high-density parasitemia (HDP; >10,000 parasites/µL) and circulating IL-1β was investigated in children with acute malaria (n=566) residing in a holoendemic P. falciparum transmission area. Hematological and parasitological profiles were determined in all study participants. IL-1β -31C/T genotyping was carried out by PCR and AluI restriction enzyme digestion, while -511A/G genotypes were determined using a Taqman 5-allelic discrimination assay. Circulating IL-1β concentrations were determined using the Cytokine 25-plex assay. Frequencies of -31C-511A, -31C-511G, -31T-511A and -31T-511G haplotypes were 87.2%, 29.1%, 2.1%, and 30.9%, respectively. Multivariate logistic regression analyses controlling for age, gender, sickle-cell trait, HIV-1, and bacteremia revealed that -31C-511A was associated with increased risk of SMA (OR; 1.98, 95% CI, 1.55-2.27; P<0.05) while -31T-511A was non-significantly associated with protection against SMA (OR, 0.52, 95% CI, 0.18-1.16; P=0.11). Consistent with these observations carriage of CA and TA haplotypes was associated with reduced (P<0.05) circulating and elevated (P<0.05) IL-1β production, respectively. Additionally, IL-1β levels were lower in SMA compared to non-SMA children. These results demonstrate that variation in the IL-1β promoter conditions susceptibility to SMA and functional changes in circulating IL-1β levels.

INHIBITION OF ANCYLOSTOMA CYELANICUM MACROPHAGE MIGRATION INHIBITORY FACTOR (ACEMIF): POTENTIAL FOR PREVENTING HOOKWORM-ASSOCIATED IMMUNOMODULATION AND DISEASE PATHOGENESIS

Jon J. Vermeire1, Yoongsang Cho2, Lin Leng3, Elias Lolis2, Richard Bucala2, Michael Cappello1

1Program in International Child Health and Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States, 2Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States, 3Department of Medicine, Yale University School of Medicine, New Haven, CT, United States

Hookworms, parasitic nematodes that infect nearly one billion people worldwide, are a major cause of anemia and malnutrition. We hypothesize that hookworms actively manipulate the host immune response through the elaboration of specific molecules at the host-parasite interface designed to facilitate infection by larval stages and adult worm survival within the small intestine. Full-length cDNAs encoding two orthologs of the human cytokine, Macrophage Migration Inhibitory Factor (MIF) have been cloned from the hookworm Ancylostoma ceylanicum. Elucidation of the three dimensional crystal structure of recombinant AceMIF-2 (rAceMIF-2) revealed an overall structural homology with significant differences in the tautomerase sites of the human and hookworm proteins. The relative bioactivities of human and hookworm MIF were compared using in vitro assays of tautomerase activity, monocyte migration, and binding to the MIF receptor, CD74. These data provide evidence that the hookworm-derived AceMIF molecules are bioactive and functional orthologs of human MIF. Vaccination of laboratory animals using purified rAceMIF-2 was associated with partial protection against anemia and growth delay following challenge infection, compared to adjuvant immunized controls. Selective in vitro inhibitors of AceMIF activities were identified using high-throughput screening (HTS) of a small molecule library representing previously defined biologically active compounds. In summary, based on its unique immunological, structural, and functional characteristics, AceMIF is a viable target for novel drug and/or vaccine based strategies for selectively inhibiting these hookworm cytokine orthologs as a means of reducing parasite survival and disease pathogenesis in vivo.

PATENT FILARIAL INFECTION MODULATES MALARIA-SPECIFIC TYPE 1 CYTOKINE RESPONSES IN AN IL-10 DEPENDENT MANNER IN A FILARIA/MALARIA CO-INFECTED POPULATION

Simon Metenou1, Benoît Dembé2, Siaka Konate1, Hussenne Dolo1, Lamine Soumaoro2, Abdallah A. Diallo2, Michel E. Coulibaly2, Siaka Y. Coulibaly2, Dramane Sanogo3, Yaya I. Coulibaly2, Sekou F. Traore2, Amy Klion1, Thomas B. Nutman1, Siddhartha Mahanty1

1National Institutes of Health, Bethesda, MD, United States, 2Filaria Unit, FMPOS, University of Bamako, Bamako, Mali

Human co-infection with malaria and filarial parasites is common in regions of Africa and particularly in Mali where both Plasmodium falciparum (Pf) and Wuchereria bancrofti (Wb) are transmitted by the same mosquito vector. As filarial infections can modulate responses to bystander antigens, we investigated the effect of filarial infections on malaria-specific immune responses. Blood samples were collected from individuals with Wb and/or Mansonella perstans (Mp) infections (Fil+; n=19), as determined by a Wb Ag capture ELISA and/or circulating microfilariae (MF), and those with no evidence of active filarial infections (Fil-; n=20) from the same village. Whole blood samples were cultured in vitro with Pf-infected red blood cell lysate [MalAg] or Brugia malayi adult antigen [BmA] in medium alone for 24 hrs. The supernatants were assayed for IL-2, IL-4, IL-6, IL-10, IL-12p70, IL-17A, TNF-α and IFN-γ by Luminex™. Compared to the Fil- group, Fil+ individuals had significantly higher levels of IL-10 (p = 0.027) and IL-17A (p = 0.037) produced spontaneously. The Fil+ group also mounted a significantly lower IL-12p70 (GM 1.11 vs. 3.20 pg/ml; p=0.022), IFN-γ (4.77 vs. 17.32 pg/ml p = 0.06) and IP10 (34.46 vs. 261.1 pg/ml p = 0.0023) responses following MalAg stimulation but a significantly higher IL-10 response (7541 pg/ml vs. 3198 pg/ml p = 0.022) compared to the Fil- group. In contrast, BmA induced significantly higher levels of IL-2 and IL-4 in Fil- than in Fil+ individuals. To understand the role played by either IL-10 or TGF-β in the regulation of Type 1 responses to MalAg in filarial infections, neutralizing antibodies to IL-10 and/or TGF-β were utilized in vitro. Whereas, anti-TGF-β had little effect on preventing the MalAg specific downregulation, anti-IL-10 antibodies induced a significant reversal of IL-12p70, IFN-γ and IP10 (p<0.001). Blocking both IL-10 and TGF-β together did not augment the responses seen with IL-10 blockade alone. Taken together these data demonstrate that filarial infections clearly modulate the Pf-specific IL-12p70-IFN-γ pathway known to play a key role in resistance to malarial parasites and do so in IL10-dependent manner. Flow cytometric analysis is currently underway to determine if Pf-specific Type 1 response modulation extends to the level of CD4+ T cell frequencies of effector or regulatory cells.
CO-INFECTION WITH HELMINTHS AND MALARIA DURING PREGNANCY EFFECT SUSCEPTIBILITY TO FALCIPARUM MALARIA DURING CHILDHOOD

Indu Malhotra1, Peter Mungai1, Alex Wamachi2, John Ouma1, Davy Koech2, Eric Muchiri2, Christopher L. King1

1Case Western Reserve University, Cleveland, OH, United States, 2Kenya Medical Research Institute, Nairobi, Kenya, 3Kenyatta University, Nairobi, Kenya, 4Division Of Vector Born Diseases, Nairobi, Kenya

We have previously observed that a subset of offspring of malaria infected pregnant women fail to acquire fetal priming to malaria blood stage antigens in utero. These putatively tolerant children were more susceptible to malaria during childhood. Since co-infections with helminths and malaria are common in developing countries we hypothesize that helminth co-infection during pregnancy may down modulate fetal immune responses to blood-stage malaria antigens. To examine the impact of helminths (schistosomiasis, lymphatic filariasis and/or hookworm) on malaria susceptibility we undertook a prospective cohort study of 705 newborns in a malaria endemic region of Kenya in which children were examined every 6 months from birth to 4 years of age for Plasmodium falciparum infection and the presence of malaria antigen-specific T cell responses. Overall 26% of the pregnant women were co-infected with helminths and malaria, 16% with malaria and 34% with helminths alone. There was a 2-3 fold increase in risk of malaria infection in offspring of women with mixed helminth and malaria infection compared to offspring of women without either infection (p<0.01) as measured by frequency of blood smear and PCR positivity at 12, 18 and 30 months of age. Similarly, offspring of women with mixed infection had significantly reduced hemoglobin levels at 12 months of age (geomean = 7.7 g/dl, p=0.02) compared to offspring of women with single infection. The increased susceptibility to malaria infection in offspring of women with mixed infection was associated with >2-fold reduced malaria-antigen-driven IFN-γ production by peripheral blood mononuclear cells compared to offspring of women infected with malaria or helminths alone (p=0.01). Thus, helminth co-infections during pregnancy may induce an immunomodulatory fetal response resulting in impaired fetal priming to malaria in utero that could enhance the risk for malaria infection during infancy. Treatment of women for helminth infections during pregnancy may have a beneficial effect on malaria susceptibility in childhood.

IDENTIFICATION AND CLONING OF BABOON TLF WHICH KILLS HUMAN INFECTIVE AFRICAN TRYPANOSOMES IN VIVO

Russell Thomson

New York School of Medicine, New York, NY, United States

African trypanosomiasis remains a scourge of public health and an obstacle to agricultural and economic development in sub-Saharan Africa. In humans the disease is caused by infection with T. brucei rhodesiense in east Africa and T. brucei gambiense, in west Africa. Cattle and other domestic animals are a major reservoir of T. b. rhodesiense. T. brucei brucei causes disease in cattle and other animals but cannot infect a subset of primates due to trypanosome lytic factors (TLFs) present in their serum. Human TLFs are high density lipoprotein complexes that contain Haptoglobin related protein (Hpr) and apolipoprotein L-I (apol-L-I). Haptoglobin related protein forms part of a ligand (Hpr-Hb) that enhances the uptake of TLF. Apolipoprotein L-I is a pore forming protein that becomes active in acidic conditions and forms pores in the lysosome membrane. Human TLFs cannot kill T. b. rhodesiense due to the acquisition of SRA. Baboon sera and purified HDL can kill human infective T. brucei, confirming that baboon and human TLFs are different. To identify the trypanolytic component of baboon serum we purified TLF and analysed the protein components using Tandem mass-spectrometry. The peptide sequences obtained were used to clone two cDNAs encoding proteins with homology to human TLF components. Using a hydrodynamic-based transgenic mouse model we show that expression of the cDNA clones confers TLF activity on mouse HDLs and protects mice from infection with both animal and human infective T. brucei. We propose that the production of baboon TLF transgenic cattle could be used to generate healthier livestock and reduce the transmission of human sleeping sickness in east Africa.

VALIDATION OF PLASMODIUM FALCIPARUM ISOLEUCYL tRNA SYNTHETASE AS A DRUG TARGET

Eva S. Istvan, Daniel E. Goldberg

Washington University School of Medicine, St. Louis, MO, United States

Intraerythrocytic Plasmodium falciparum has minimal capability for amino acid synthesis. Amino acids are obtained via hemoglobin degradation and via uptake from the extracellular environment. Parasites are able to grow with isoleucine as the sole exogenous amino acid, relying on hemoglobin degradation for most of their needs (isoleucine is the only amino acid absent in human hemoglobin). Malaria parasites may be especially sensitive to perturbation of isoleucine uptake and/or utilization. tRNA synthetases couple amino acids to their cognate tRNAs. Two isoleucyl tRNA synthetases (IRs) are predicted in the Plasmodium genome, one cytoplasmic and one containing a putative apicoplast targeting signal. Mupirocin is a compound produced by Pseudomonas fluorescens and is used clinically for methicillin-resistant Staph. aureus. Mupirocin resembles the Ile-AMP transition state complex and has been shown to act as a competitive inhibitor of bacterial and archeal IRs. We determined that mupirocin is a potent anti-malarial compound and kills parasites at nanomolar concentrations. Parasites are killed with “delayed-death” kinetics. Inhibition by mupirocin is attenuated by high isoleucine medium.
To show that mupirocin acts on the apicoplast-located IRS, we selected parasites resistant to mupirocin. Sequencing of cloned mupirocin-resistant parasites revealed a C to T change at nt 4034 of the predicted apicoplast IRS. This mutation results in an amino acid change of Pro1233 to Ser. Pro1233 is completely conserved in IRSs and is proximal to the active site.

PROBING CENTRAL CARBON METABOLISM IN PLASMODIUM FALCIPARUM

Kellen Olszewski1, Joshua D. Rabinowitz2, Manuel Linñas1
1Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States, 2Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States

Despite decades of study, central carbon metabolism in the Plasmodia remains poorly understood. Early microscopic and biochemical observations suggested that blood-stage Plasmodia possess a minimal mitochondrion with limited respiratory capacity that does not contribute to energy generation. However, recent whole-genome sequences and transcriptional profiling experiments have revealed that potential homologs to all the necessary tricarboxylic acid (TCA) cycle enzymes are both encoded by the apicoplast genome and coordinately expressed during the trophozoite stage, strongly implying that some variant of the TCA cycle is active during asexual development. Several of these predicted enzymes have been confirmed biochemically or localized to the mitochondrion; however, the principal carbon source(s), directionality and ultimate role of the TCA cycle have not been established. We have used HPLC-MS/MS-based metabolomics and stable isotope-labeled nutrients to trace carbon flux through TCA cycle intermediates in in vitro cultures of Plasmodium falciparum (3D7 strain). Our data confirm the previously suggested disconnect between glycolysis and TCA metabolism and suggest an acyclic model in which glutamine and glutamate are the principal carbon sources and two discrete pathways act to generate energy, redox balance and biosynthetic intermediates. These results shed light on one of the most divergent examples of eukaryotic carbon metabolism and have implications for the effective design of therapeutic interventions.

RAPID MEMBRANE DISRUPTION BY A PERFORIN-LIKE PROTEIN FACILITATES PARASITE EXIT FROM THE HOST CELL

Björn F.C. Kafsack1, Janethe D. O. Penã3, Isabelle Coppens2, Sandeep Ravindran4, John C. Boothroyd4, Vern B. Carruthers1
1Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States, 2Department of Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, United States, 3Department of Immunology, Universidade Federal de Uberlandia, Uberlandia, Brazil, 4Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States

The MACPF domain owes its name to the pore-forming proteins of the mammalian immune system where it is found in the final components of the complement cascade that form the membrane attack complex. Within the Apicomplexa we revealed that the MACPF-fold is of ancient origin and expressed by many bacterial and protozoan pathogens. Co-infection of host cells with wild-type and TgPLP1-null strains showed that egress of a WT vacuole was able to complement both the egress and permeabilization defects of the mutant vacuole. This marks the first time a secreted Toxoplasma protein has been shown to play a central role in egress.

A CALCIUM DEPENDENT PROTEIN KINASE MODULATES MICRONEME SECRETION IN TOXOPLASMA GONDII

Sebastian Lourido
Washington University School of Medicine, St. Louis, MO, United States

Apicomplexans rely on calcium as a second messenger to regulate motility, secretion, invasion and differentiation. Understanding calcium signal transduction is essential to elucidating the molecular mechanisms controlling these functions. Calcium dependent protein kinases (CDPKs) have been shown to respond to calcium, and genetic evidence in Plasmodium confirms their role in gametocyte exflagellation and oocyte motility. However, the basic pathways controlled by these kinases remain poorly understood, as does their role in other apicomplexans. Four canonical CDPKs conserved among apicomplexans are expressed in Toxoplasma gondii tachyzoites. Of these, TgCDPK1 and TgCDPK3 form a distinct phylogenetic lineage, sharing multiple characteristics. Both proteins are predicted to be N-terminal acylated and we show that these motifs are crucial for membrane localization of TgCDPK3. Additionally, both proteins are deposited in trails of gliding parasites, similarly to various components of the gliding machinery. To further examine the function of these CDPKs, we generated conditional inducible mutants employing the published tetracycline transactivator system. We successfully created a conditional TgCDPK1 mutant and have characterized its phenotype. When grown in the presence of anhydrotetracycline, mutant parasites showed decreased adhesion and invasion into host cells, and reduced lytic ability in a monolayer growth assay. Reminiscent of mutations in certain microneme proteins, these phenotypes suggested a potential defect in secretion. Consistent with this hypothesis, we observed that TgCDPK1 mutants failed to secrete MIC2 in response to induction by ethanol, a potent agonist. These results suggest that TgCDPK1 may be activating microneme secretion, thus forming a critical signaling link downstream of calcium in this essential pathway.
The decline in bone marrow B lymphopoiesis in infected mice appears to result from expulsion of B cell progenitor populations out of the bone marrow into the spleen as it was mirrored by an increase in common lymphoid progenitors (CLP, Lin-; AA4.1+; IL7-), pre-pro-B (Lin-, IgM-, CD19-, AA4.1+, B220+), pre-B (Lin-, IgM-, CD19-, AA4.1+, B220+, CD43hi) and pre-B (Lin-, IgM-, CD19-, AA4.1+, B220+, CD43lo/l-) in the spleen. In contrast, the loss of bone marrow immature B cells (Lin-, CD43lo/l-, AA4.1+, CD19+, B220+, IgM+) and splenic transitional B cells appears to result from apoptosis. To define the mechanisms underlying T. brucei AnTat 1.1E induced B cell pathology, infections were established in TNF and MyD88 gene-deficient mice. Both the loss of developing B cell populations pre-pro-B, pre-B and immature B from the bone marrow and the infiltration of these precursor populations in the spleen was significantly less pronounced in infected TNF-/− mice as compared to the wild type mice and MyD88-/− mice. Interestingly, during infection the depletion of transitional B cells was not only rescued in TNF-/− mice but also appeared to a much lesser extent in MyD88-/− mice as compared to infected wild type mice. Finally, only in MyD88-/− mice reduced B cell pathology was observed with respect to the loss of FoB cells. In conclusion we show here that two important components of the innate immune system, TNF and MyD88, are involved in the induction B cell pathology during T. brucei infection and that at least 3 different processes, one TNF-dependent, one TNF-and MyD88-dependent and one MyD88-dependent, are responsible for respectively the loss of B lymphopoiesis from the bone marrow and the depletion of transitional B cells and FoB cells.

1241

NEUTROPHILS ARE THE PREDOMINANT INITIAL HOST CELL FOR LEISHMANIA MAJOR AND ARE ESSENTIAL FOR THE ESTABLISHMENT OF SAND FLY TRANSMITTED INFECTION

Nathan C. Peters1, Jackson G. Egen2, Naglia Secundino1, Alain Debrabant3, Nicola Kimblin1, Shaden Kamhawi1, Phillip Lawyer1, Ronald N. Germain2, David Sacks1

1Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; 2Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; 3Division of Emerging and Transfusion Transmitted Diseases, OBBR, CBER, Food and Drug Administration, Bethesda, MD, United States

Infection with the obligate intracellular protozoan Leishmania is thought to be initiated by direct parasitization of macrophages, but the early events following transmission to the skin by vector sand flies have been difficult to examine directly. Employing 2-photon intra-vital microscopy and flow cytometry, we observed a rapid and sustained neutrophil infiltrate directed towards localized bite sites and subsequent phagocytosis of L. major. Neutrophils ultimately defined the sand fly bite site by creating a neutrophil “plug” at the location of proboscis penetration in the skin. The formation of the neutrophil plug occurs with both infected and uninfected sand flies, suggesting that the wound response to sand fly bite is the primary driving factor in acute neutrophil recruitment. Recruited neutrophils, not macrophages, were the predominant host cell during the first 24 hours of infection following needle inoculation, and neutrophils contained viable parasites that could be propagated in culture. Following adoptive transfer of infected neutrophils into the ear dermis of naïve mice, neutrophil derived parasites established disease as efficiently as infectious parasites obtained from culture. Between 24-72 hours of infection, L. major parasites transitioned from neutrophils to their definitive host cell, the macrophage, a process that involved parasite release from infected neutrophils. Lastly, depletion of neutrophils prior to infected sand fly bite abrogated the ability of L. major to initiate productive infections and was associated with an increase in the production of the proinflammatory molecules, IL-1 alpha and IL-1 beta. These findings reveal the directed migration of large numbers of neutrophils to sites of L. major deposition by sand fly bite, identify neutrophils as critical to the infectious process and an essential cell in the parasite life cycle, and suggest L. major exploits the early host response to sand fly bite in order to establish and promote disease.

1242

DENDRITIC CELL IL-23 PRODUCTION IN RESPONSE TO SCHISTOSOME EGGS INDUCES TH17 CELLS IN A MOUSE STRAIN PRONE TO SEVERE IMMUNOPATHOLOGY

Mara G. Shainheit, Patrick M. Smith, Lindsey E. Bazzone, Laura I. Rutitzky and Miguel J. Stadecker

Department of Pathology, Tufts University School of Medicine, Boston, MA, United States

Infection with schistosomes results in a CD4 T cell-mediated inflammatory reaction against parasite eggs that varies greatly in magnitude both in humans as well as in mice. In the murine disease, the severe form of immunopathology correlates with high levels of interleukin 17 (IL-17). We now report that live schistosome eggs stimulate dendritic cells from (high pathology) CBA mice to produce IL-6, TGF-β and IL-17, whereas those from (low pathology) Bl/6 mice only make TGF-β and IL-17. Moreover, egg stimulation of dendritic cells plus naïve CD4 T cells from CBA mice resulted in increased levels of IL-17 and the chemokines CXCL1, CXCL2 and CCL2, whereas similarly treated Bl/6 cell co-cultures instead expressed higher IL-4, IL-10 and Foxp3. Neutralization of IL-23, but not of IL-6 or IL-21, profoundly inhibited egg-induced IL-17 production in the CBA co-cultures, and only the addition of exogenous IL-23 stimulated Bl/6 cells to make IL-17. These findings identify IL-23 as a critical host factor that drives IL-17-production and suggest that a genetically programmed innate pro-inflammatory response against the parasite determines the development of Th17 cells and the outcome of immunopathology in schistosomiasis.

1243

PERIPHERAL TREG INDUCTION CAN BE DIRECTLY MEDIATED BY HELMINTH-DERIVED PRODUCTS

John R. Grainger, Henry J. McSorley, Yvonne M. Marcus, Edward J. Greenwood, Rick M. Maizels

Institute of Immunology and Infection Research, University of Edinburgh, United Kingdom

Epidemiological studies of human allergic disease have highlighted the discordance between their increasing prevalence in the western world, compared to lower incidence in the developing world, where endemcity of helmint parasites is high. In animal models, a direct link has been suggested between helmint infection and reduced allergic responses. For example, mice harbouring the chronic rodent gut nematode H. polygyrus show suppressed allergic airway inflammation, even if infection follows normal sensitization of the immune system. Moreover, transfer of CD4+CD25+ Tregs, which expand in the mesenteric lymph nodes following infection, to uninfected sensitized animals results in reduced bronchial inflammation upon allergen challenge. These results suggest that parasites have evolved mechanisms to exploit host regulatory networks thus gaining a long-term survival advantage. An intriguing question is whether H. polygyrus activates pre-existing “natural” Tregs, or induces regulatory activity in peripheral naïve T cells. We have addressed this by functionally analysing a set of proteins released by live parasites, termed excretory/ secretory products (ES). We found that H. polygyrus ES (HES) is able to mediate Treg induction, in vitro, as anti-CD3 stimulation of Foxp3 negative splenocyte cultures in the presence of HES leads to de novo Foxp3 expression. Foxp3 induction is not observed with anti-CD3 stimulation alone or with a range of other pathogen-derived products tested under the same conditions. Furthermore, Foxp3 induction is dependent upon signalling through the TGF-beta receptor as inhibition of this pathway with a specific inhibitor (SB431542) abrogates Foxp3 induction by HES. The Tregs induced by HES are able to suppress proliferation of effector T cells to a similar extent as TGF-beta generated Tregs. These data confirm that helmint derived products are able to
directly drive Treg expansion in the periphery, raising the possibility that they can mediate the airway allergy suppression observed in whole worm infection.
<table>
<thead>
<tr>
<th>Author Name</th>
<th>Abstract Number(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abo, Patrick</td>
<td>53</td>
</tr>
<tr>
<td>Abiodun, Oyindamola</td>
<td>974</td>
</tr>
<tr>
<td>Abokyi, Livesy</td>
<td>473</td>
</tr>
<tr>
<td>Abiodun, Oyindamola</td>
<td>974</td>
</tr>
<tr>
<td>Abou, Esteban</td>
<td>473</td>
</tr>
<tr>
<td>Abraha, David</td>
<td>1152, 1153</td>
</tr>
<tr>
<td>Abruquah, Harry</td>
<td>638</td>
</tr>
<tr>
<td>Abu Ayyash, Luma</td>
<td>1097</td>
</tr>
<tr>
<td>Adebisi, Victor</td>
<td>349</td>
</tr>
<tr>
<td>Achebe, Nicole</td>
<td>242</td>
</tr>
<tr>
<td>Achen, Jane</td>
<td>177, 824</td>
</tr>
<tr>
<td>Achee, Nicholas</td>
<td>242</td>
</tr>
<tr>
<td>Achidi, Eric</td>
<td>204</td>
</tr>
<tr>
<td>Achille, Rachel</td>
<td>399</td>
</tr>
<tr>
<td>Acholotu, Alex</td>
<td>27, 124, 568</td>
</tr>
<tr>
<td>Acosta, Luz</td>
<td>331, 389</td>
</tr>
<tr>
<td>Adam, Ishag</td>
<td>346</td>
</tr>
<tr>
<td>Adams, John</td>
<td>411, 628, 639, 776, 931</td>
</tr>
<tr>
<td>Adams, Nick</td>
<td>1105</td>
</tr>
<tr>
<td>Adazu, Kuba</td>
<td>369, 372, 615</td>
</tr>
<tr>
<td>Adegbagbe, Richard</td>
<td>264</td>
</tr>
<tr>
<td>Adel, Zach</td>
<td>332, 1162, 1163</td>
</tr>
<tr>
<td>Adeloye, Oluwunke</td>
<td>453</td>
</tr>
<tr>
<td>Ademowo, George</td>
<td>398, 929, 948</td>
</tr>
<tr>
<td>Adeneyi, Adekunle</td>
<td>455</td>
</tr>
<tr>
<td>Adeoti, Adeniyi</td>
<td>455</td>
</tr>
<tr>
<td>Adeyemo, Adeyemo</td>
<td>152, 154</td>
</tr>
<tr>
<td>Adhun, Adekunle</td>
<td>853</td>
</tr>
<tr>
<td>Adki, George</td>
<td>28, 473</td>
</tr>
<tr>
<td>Adji, Ahmed</td>
<td>28, 473</td>
</tr>
<tr>
<td>Adji, Jennifer</td>
<td>268</td>
</tr>
</tbody>
</table>

The number(s) following author name refers to the abstract number.
The number(s) following author name refers to the abstract number.

www.astmh.org
Quick, Rob 16, 99, 106
Quijano, Eberth 1102
Quijano-Hernandez, Israel 922
Quinhoio, Vatúisia 229
Quinn, Matthew H. 44
Quinnell, Rupert J. 133, 469
Quintero-Gil, Carolina 497
Qureshi, Ammar 179
Qvamstrom, Yvonne 287, 826, 1176

Rathore, Dharmendar 594, 811
Rattendi, Donna 557
Rätti, Osmo 317
Rausch, Kelly M. 22, 645
Ravdin, Jonathan 280
Raverdy, Sylvine 515, 523
Rawson, Ian 631
Ray, Prabhati 581
Rayavarra, Kempaiah 221
Rayner, Julian C. 653, 1045
Razuri, Hugo R. 309, 320
Razzaqani Sanfeliu, Maria 722
Rea, I. 422
Redding, Kevin M. 1152
Reddy, Michael R. 738
Reddy, Vijayalakshmi 905
Redmond, Seth 1078
Reed, John L. 989
Reed, Steven G. 564
Reeder, John 819
Reese, Nicole 978, 979
Regis, David 7, 1034
Reif, Kathryn E. 783
Reimels, William 810
Reimer, Lisa J. 241
Reimert, Claus M. 300
Reingold, Arthur 705
Reis, Elila A. G. 751, 902, 903
Reis, Mitemayer G. 68, 673, 751, 901, 902, 903
Reisen, William 256, 1092
Reiter, Karine 3, 1038
Reisinger, Richard 216
Reisman, David A. 14
Remich, Shon 458
Remington, Jack S. 1142
Remoue, Franck 324, 737, 1093, 1219
Renaud, François 206
Resende, Mafalda 641
Restrepo, Bertha N. 899, 900
Reuter, Stefan 402
Rewerts, Cindy 537
Reyes, Lissette 98, 777
Reyes, Nora 1099
Reyes, Scarina 7
Reyes-Solis, Guadalupe C. 1063, 1067
Reynolds, Christine 568
Reynolds, Steven 73
Rhman, Bassem Abdel 266
Rhodes, Michael T. 85
Ribeiro, Gilmar J. 673
Ribeiro, Isabela 731, 951
Ribeiro, Jose M. 941, 1070, 1172
Ribeiro, Paula 307, 741
Richards, Allen 780
Richards, Frank O. 35, 216, 335, 527, 874, 1003, 1117, 1157, 1160
Richards, Stephanie L. 692, 749
Richardson, Eugene 827
Richardson, Jason 416, 734, 980
Richardson, Susan E. 262
Richardson, Adam 1
Richer, Martin H. 1126
Rick, Fairhurst 866
Rider, Mark A. 849, 1083
Rieckmann, Karl H. 450, 973
Riedesel, Melissa A. 1007
Riehle, Michael A. 668, 669, 1135
Rienthong, Somsak 702
Rijal, Basista Prasad 66
Riley, Eleanor 26, 32, 795, 997, 1016, 1229
Rimi, Nadia A. 715
Riner, Diana K. 242
Ringwald, Pascal 774
Rios, Poompoodpho, Jeanne 935
Ripter, Anja 991
Riquelme, R. 1127
Riosco, Mike 760
Rivera, Cedillo 887
Rivera, Fulton P. 825
Rivera, Yisel 886
Rivero-Cardenas, Nubia 732
Rivers-Davis, Andrea 288
Rivière, Gilles-Jacques 568
Rizal, Suman 445
Rizvi, Mosahid A. 224
Rizzo, Nidia R. 869
Robb-McCord, Judith 216
Robert, Willie 1130
Roberts, Jacqueline 1142
Roberts, Lisa O. 321
Robertson, Janelle L. 275
Robins, Melissa L. 18
Robinson, Jamie S. 834, 905
Robles Lopez, Jose Luis 57
Robles-Barcena, Miguel 39
Roca, Yelin 1099
Rocha, Crisanta 14, 47, 388
Rocha, Claudio 316, 890
Roche, James K. 104, 288
Rocheleau, Thomas A. 663
Rochford, Rosemary 581
Rock, Dabiré 1217
Rock, Tonie E. 1161
Rodart, Itatiana F. 901
Rodenk, Ditthakorn 957
Rodriguez, Nydia A. 242
Rodriguez, Aixa 557
Rodrigues-Silva, Rosangela 436
Rodrigues, Sueli G. 721
Rodrigues, Raquel F. 691
Rodrigues, Janneth 1160
Rodpradit, Prinyada 125
Rodnak, Ditthakorn 957
Rodriguez-Neaves, Nydia A. 448
Rizvi, Mosahid A. 206
Rizvi, Mosahid A. 242
Rizzio, Nidia R. 869
Robb-McCord, Judith 216
Robert, Willie 1130
Roberts, Jacqueline 1142
Roberts, Lisa O. 321
Robertson, Janelle L. 275
Robins, Melissa L. 18
Robinson, Jamie S. 834, 905
Robles Lopez, Jose Luis 57
Robles-Barcena, Miguel 39
Roca, Yelin 1099
Rocha, Crisianta 14, 47, 388
Rocha, Claudio 316, 890
Roche, James K. 104, 288
Rocheleau, Thomas A. 663
Rochford, Rosemary 581
Rock, Dabiré 1217
Rocke, Tonie E. 1161
Rodart, Itatiana F. 901
Rodenk, Ditthakorn 957
Rodriguez, Nydia A. 242
www.astmh.org
Zhang, Zhongsheng 977
Zhao, Dazhi 565
Zheng, Qiang 1207
Zhong, Daibin 1002
Zhou, Ainong 1015
Zhou, Guoli 656
Zhou, Hong 4, 5, 652
Zhou, Huchen 162
Zhou, Huayun 245
Zhu, Daming 22, 1047
Zhu, Guoding 245
Zhu, Jinsong 670
Zhu, Xiaohua 540
Zhuang, Shijie 207, 250
Ziegler, Sarah A. 724
Zielinski-Gutierrez, Emily 57
Zimmerman, Dominica 717
Zimmerman, Dan 1018
Zimmerman, Peter A. 607, 996, 1158
Zink, Rebecca 519, 521
Zinyowera, Sekesai 342
Zongo, Issaka 985
Zou, Zhen 1174, 1199
Zuluaga, Lina 981
Zunt, Joseph R. 1102, 1129
Zwang, Julien 952